File size: 13,072 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
38f315e
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
31243f4
 
 
38f315e
88d1b70
31243f4
 
88d1b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
3725ecd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
3725ecd
88d1b70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from agent import AmbiguityClassifier
import json

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.analizar_historia = AmbiguityClassifier()
        
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            resultado = self.analizar_historia(question)
            
            # Formatear la respuesta
            respuesta = []
            if resultado["tiene_ambiguedad"]:
                respuesta.append("Se encontraron las siguientes ambigüedades:")
                
                if resultado["ambiguedad_lexica"]:
                    respuesta.append("\nAmbigüedades léxicas:")
                    for amb in resultado["ambiguedad_lexica"]:
                        respuesta.append(f"- {amb}")
                
                if resultado["ambiguedad_sintactica"]:
                    respuesta.append("\nAmbigüedades sintácticas:")
                    for amb in resultado["ambiguedad_sintactica"]:
                        respuesta.append(f"- {amb}")
                
                respuesta.append(f"\nScore de ambigüedad: {resultado['score_ambiguedad']}")
                respuesta.append("\nSugerencias de mejora:")
                for sug in resultado["sugerencias"]:
                    respuesta.append(f"- {sug}")
            else:
                respuesta.append("No se encontraron ambigüedades en la historia de usuario.")
                respuesta.append(f"Score de ambigüedad: {resultado['score_ambiguedad']}")
            
            return "\n".join(respuesta)
        except Exception as e:
            error_msg = f"Error analizando la historia: {str(e)}"
            print(error_msg)
            return error_msg

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# Inicializar el clasificador
classifier = AmbiguityClassifier()

def analyze_user_story(user_story: str) -> str:
    """Analiza una historia de usuario y retorna los resultados formateados."""
    if not user_story.strip():
        return "Por favor, ingrese una historia de usuario para analizar."
    
    # Analizar la historia
    result = classifier(user_story)
    
    # Formatear resultados
    output = []
    output.append(f"📝 Historia analizada:\n{user_story}\n")
    output.append(f"🎯 Score de ambigüedad: {result['score_ambiguedad']}")
    
    if result['ambiguedad_lexica']:
        output.append("\n📚 Ambigüedades léxicas encontradas:")
        for amb in result['ambiguedad_lexica']:
            output.append(f"• {amb}")
    
    if result['ambiguedad_sintactica']:
        output.append("\n🔍 Ambigüedades sintácticas encontradas:")
        for amb in result['ambiguedad_sintactica']:
            output.append(f"• {amb}")
    
    if result['sugerencias']:
        output.append("\n💡 Sugerencias de mejora:")
        for sug in result['sugerencias']:
            output.append(f"• {sug}")
    
    return "\n".join(output)

def analyze_multiple_stories(user_stories: str) -> str:
    """Analiza múltiples historias de usuario separadas por líneas."""
    if not user_stories.strip():
        return "Por favor, ingrese al menos una historia de usuario para analizar."
    
    stories = [s.strip() for s in user_stories.split('\n') if s.strip()]
    all_results = []
    
    for i, story in enumerate(stories, 1):
        result = classifier(story)
        story_result = {
            "historia": story,
            "score": result['score_ambiguedad'],
            "ambiguedades_lexicas": result['ambiguedad_lexica'],
            "ambiguedades_sintacticas": result['ambiguedad_sintactica'],
            "sugerencias": result['sugerencias']
        }
        all_results.append(story_result)
    
    return json.dumps(all_results, indent=2, ensure_ascii=False)

# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="Detector de Ambigüedades en Historias de Usuario") as demo:
    gr.Markdown("""
         # 🔍 Detector de Ambigüedades en Historias de Usuario
    
    Esta herramienta analiza historias de usuario en busca de ambigüedades léxicas y sintácticas, 
    proporcionando sugerencias para mejorarlas.
    
    ## 📝 Instrucciones:
    1. Ingrese una historia de usuario en el campo de texto
    2. Haga clic en "Analizar"
    3. Revise los resultados y las sugerencias de mejora
        
    """)

    with gr.Tab("Análisis Individual"):
        input_text = gr.Textbox(
            label="Historia de Usuario",
            placeholder="Como usuario quiero...",
            lines=3
        )
        analyze_btn = gr.Button("Analizar")
        output = gr.Textbox(
            label="Resultados del Análisis",
            lines=10
        )
        analyze_btn.click(
            analyze_user_story,
            inputs=[input_text],
            outputs=[output]
        )
    
    with gr.Tab("Análisis Múltiple"):
        input_stories = gr.Textbox(
            label="Historias de Usuario (una por línea)",
            placeholder="Como usuario quiero...\nComo administrador necesito...",
            lines=5
        )
        analyze_multi_btn = gr.Button("Analizar Todas")
        output_json = gr.JSON(label="Resultados del Análisis")
        analyze_multi_btn.click(
            analyze_multiple_stories,
            inputs=[input_stories],
            outputs=[output_json]
        )
    
    gr.Markdown("""
    ## 🚀 Ejemplos de Uso
    
    Pruebe con estas historias de usuario:
    - Como usuario quiero un sistema rápido y eficiente para gestionar mis tareas
    - El sistema debe permitir exportar varios tipos de archivos
    - Como administrador necesito acceder fácilmente a los reportes
    """)

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)