File size: 6,444 Bytes
efe939a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# coding: utf-8

# #### Gradio Comparing Transfer Learning Models

# In[1]:


import tensorflow as tf
print(tf.__version__)


# In[2]:


pip install gradio==1.6.0


# In[3]:


pip install MarkupSafe==2.1.1


# In[1]:


import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import requests


# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

mobile_net = tf.keras.applications.MobileNetV2()
inception_net = tf.keras.applications.InceptionV3()


# In[2]:


def classify_image_with_mobile_net(im):
    im = Image.fromarray(im.astype('uint8'), 'RGB')
    im = im.resize((224, 224))
    arr = np.array(im).reshape((-1, 224, 224, 3))
    arr = tf.keras.applications.mobilenet.preprocess_input(arr)
    prediction = mobile_net.predict(arr).flatten()
    return {labels[i]: float(prediction[i]) for i in range(1000)}
    


# In[3]:


def classify_image_with_inception_net(im):
    # Resize the image to
    im = Image.fromarray(im.astype('uint8'), 'RGB')
    im = im.resize((299, 299))
    arr = np.array(im).reshape((-1, 299, 299, 3))
    arr = tf.keras.applications.inception_v3.preprocess_input(arr)
    prediction = inception_net.predict(arr).flatten()
    return {labels[i]: float(prediction[i]) for i in range(1000)}


# In[4]:


imagein = gr.inputs.Image()
label = gr.outputs.Label(num_top_classes=3)
sample_images = [
                 ["monkey.jpg"],
                 ["sailboat.jpg"],
                 ["bicycle.jpg"],
                 ["download.jpg"],
]


# In[6]:


gr.Interface(
    [classify_image_with_mobile_net, classify_image_with_inception_net],
    imagein,
    label,
    title="MobileNet vs. InceptionNet",
    description="""Let's compare 2 state-of-the-art machine learning models that classify images into one of 1,000 categories: MobileNet (top),
          a lightweight model that has an accuracy of 0.704, vs. InceptionNet
          (bottom), a much heavier model that has an accuracy of 0.779.""",
    examples=sample_images).launch()


# In[6]:


pip install transformers


# In[6]:


import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# Load the models and tokenizers
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer1 = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-imdb")
tokenizer2 = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
model1 = AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")
model2 = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")




# Define the sentiment prediction functions
def predict_sentiment(text):
    # Predict sentiment using model 1
    inputs1 = tokenizer1.encode_plus(text, padding="longest", truncation=True, return_tensors="pt")
    outputs1 = model1(**inputs1)
    predicted_label1 = outputs1.logits.argmax().item()
    sentiment1 = "Positive" if predicted_label1 == 1 else "Negative" if predicted_label1 == 0 else "Neutral"

    # Predict sentiment using model 2
    inputs2 = tokenizer2.encode_plus(text, padding="longest", truncation=True, return_tensors="pt")
    outputs2 = model2(**inputs2)
    predicted_label2 = outputs2.logits.argmax().item()
    sentiment2 = "Positive" if predicted_label2 == 1 else "Negative" if predicted_label2 == 0 else "Neutral"

    return sentiment1, sentiment2

# Create the Gradio interface
iface = gr.Interface(
    fn=predict_sentiment,
    inputs="text",
    outputs=["text", "text"],
    title="Sentiment Analysis (Model 1 vs Model 2)",
    description="Compare sentiment predictions from two models.",
)

# Launch the interface
iface.launch()


# In[17]:


import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from torchvision import transforms
from io import BytesIO
from PIL import Image

# Define the available models and datasets
models = {
    "Model 1": {
        "model_name": "bert-base-uncased",
        "tokenizer": None,
        "model": None
    },
    "Model 2": {
        "model_name": "distilbert-base-uncased",
        "tokenizer": None,
        "model": None
    },
    # Add more models as needed
}

datasets = {
    "Dataset 1": {
        "name": "imdb",
        "split": "test",
        "features": ["text"],
    },
    "Dataset 2": {
        "name": "ag_news",
        "split": "test",
        "features": ["text"],
    },
    # Add more datasets as needed
}

# Load models
for model_key, model_info in models.items():
    tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
    model = AutoModelForSequenceClassification.from_pretrained(model_info["model_name"])
    model_info["tokenizer"] = tokenizer
    model_info["model"] = model

# Set the device to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model_info in models.values():
    model_info["model"].to(device)

# Define the preprocessing function
def preprocess(image_file):
    image = Image.open(BytesIO(image_file.read())).convert("RGB")
    preprocess_transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    image = preprocess_transform(image)
    image = image.unsqueeze(0)
    return image.to(device)

# Define the prediction function
def predict(image_file, model_key):
    model_info = models[model_key]
    tokenizer = model_info["tokenizer"]
    model = model_info["model"]

    image = preprocess(image_file)

    with torch.no_grad():
        outputs = model(image)

    predictions = outputs.logits.argmax(dim=1)

    return predictions.item()

def classify_image(image, model_key):
    image = Image.fromarray(image.astype('uint8'), 'RGB')
    image_file = BytesIO()
    image.save(image_file, format="JPEG")
    prediction = predict(image_file=image_file, model_key=model_key)
    return prediction

iface = gr.Interface(fn=classify_image,
                     inputs=["image", gr.inputs.Dropdown(list(models.keys()), label="Model")],
                     outputs="text",
                     title="Image Classification",
                     description="Classify images using Hugging Face models")

iface.launch()


# In[ ]: