Spaces:
Running
Running
""" | |
convert Docling documents to Langchain documents | |
1. Extract images and tables from the Docling document. | |
2. Extract the text from the Docling document. | |
3. Create Langchain documents from the extracted images, tables, and text. | |
4. save the data in json file. | |
""" | |
import json | |
import os | |
import itertools | |
from uuid import uuid4 | |
from docling.document_converter import DocumentConverter | |
from docling_core.types.doc.document import TableItem,PictureItem | |
from docling_core.types.doc.labels import DocItemLabel | |
from langchain_core.documents import Document | |
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker | |
import logging | |
def adding_metadata_chunks(chunks: HybridChunker, file_name: str, speciality: str) -> list[Document]: | |
"""Adding metadata to the chunks | |
This function processes a list of chunks and adds metadata to each chunk. | |
Args: | |
chunks (Hybridchunker): The chunks to be processed. | |
file_name (str): The name of the file from which the chunks were created. | |
specality (str): specalization of the book. | |
Returns: | |
List[Document]: A list of Document objects with added metadata. | |
""" | |
documents = [] | |
for idx, chunk in enumerate(chunks): | |
items = chunk.meta.doc_items | |
if len(items) == 1 and isinstance(items[0], TableItem): | |
# If the chunk is a table, we can skip it | |
continue | |
main_ref = ",".join([item.get_ref().cref for item in items]) | |
parent_ref = ",".join([item.parent.get_ref().cref for item in items]) | |
child_ref = ",".join([str(child) for sublist in [item.children for item in items] for child in sublist]) | |
text = chunk.text # The text of the chunk | |
metadata = { | |
"source": file_name, | |
"specilization": speciality, | |
"chunk_index": idx, | |
"self_ref": main_ref, | |
"parent_ref": parent_ref, | |
"child_ref": child_ref, | |
"chunk_type": "text", | |
} | |
document = Document(page_content=text, metadata=metadata) | |
documents.append(document) | |
return documents | |
def extract_all_text(docling_document: DocumentConverter, | |
file_name: str, | |
medical_specialty: str) -> list[Document]: | |
"""To exract all the text from the docling document and convert it to langchain | |
document. This is useful for creating a vector store from the text. | |
Args: | |
docling_document (DocumentConverter): _docling_document_ | |
file_name (str): name of the file | |
medical_specialty (str): book category | |
Returns: | |
list[Document]: _list of langchain documents_ | |
""" | |
documents_list = list() | |
for text in docling_document.texts: | |
content = text.text | |
main_ref = " ".join([text.get_ref().cref]) | |
parent_ref = " ".join([text.parent.get_ref().cref]) | |
child_ref = ", ".join([ref.get_ref().cref for ref in text.children]) | |
document = Document(page_content=content, metadata={ | |
"source": file_name, | |
"chunk_index": None, | |
"self_ref": {main_ref}, | |
"parent_ref": {parent_ref}, | |
"child_ref": {child_ref}, | |
"chunk_type": "text", | |
"medical_specialty" : medical_specialty, | |
"reference": None | |
}) | |
documents_list.append(document) | |
return documents_list | |
def extract_tables(docling_document: DocumentConverter, | |
file_name: str, | |
medical_specialty: str) -> list[Document]: | |
"""Extract the tables from the converted document and add metadata. | |
Args: | |
document (DocumentConverter): converted document. | |
file_name (str): file name. | |
medical_specialty (str): book category | |
Returns: | |
list[TableItem]: A list of documents containing table data with | |
reference IDs in the metadata. | |
""" | |
tables: list[Document] = [] | |
for table in docling_document.tables: | |
if table.label in [DocItemLabel.TABLE]: | |
main_ref = " ".join([table.get_ref().cref]) | |
parent_ref = " ".join([table.parent.get_ref().cref]) | |
child_ref = table.children | |
text = table.export_to_markdown() | |
metadata = { | |
"source": file_name, | |
"chunk_index": None, | |
"self_ref": main_ref, | |
"parent_ref": parent_ref, | |
"child_ref": child_ref, | |
"chunk_type": "table", | |
"medical_specialty" : medical_specialty, | |
} | |
document = Document(page_content=text, metadata=metadata) | |
tables.append(document) | |
return tables | |
def extract_text_ids(data: dict) -> list: | |
""" | |
Extract all references from a dictionary and return a list of numbers | |
from any '#/texts/{number}' references. | |
Args: | |
data (dict): The dictionary to extract from. | |
Returns: | |
list: List of integers extracted from '#/texts/{number}' refs. | |
""" | |
refs = [v for k, v in data.items() if k.endswith('_ref') and isinstance(v, str)] | |
text_ids = [int(ref.split('/')[2]) for ref in refs if ref.startswith('#/texts/')] | |
return text_ids | |
def save_json(file_path: str, category: str,data: list[Document]) -> None: | |
"""Save the data in json format. | |
Args: | |
file_path (str): path of the file. | |
data (list[Document]): list of documents. | |
""" | |
doc_dicts = [{"content": doc.page_content, "metadata": doc.metadata} for doc in data] | |
with open(f"{file_path}/{category}.json", "w") as f: | |
json.dump(doc_dicts, f) | |
# def main(file_path: str, | |
# file_name: str, | |
# save_path: str, | |
# ) -> list[Document]: | |
# """Main function to convert docling documents to langchain documents. | |
# Args: | |
# file_path (str): path of the file. | |
# file_name (str): name of the file. | |
# Returns: | |
# list[Document]: list of langchain documents. | |
# """ | |
# # Extract all text from the docling document | |
# docling_document = DocumentConverter(file_path) | |
# texts = extract_all_text(docling_document, file_name) | |
# # Extract tables from the docling document | |
# tables = modifying_tables(docling_document, file_name) | |
# # Extract images from the docling document | |
# # Combine all documents into a single list | |
# documents = list(itertools.chain(texts, tables)) | |
# save_json(save_path, documents) | |
# if __name__ == "__main__": | |
# logging.basicConfig( | |
# level=logging.DEBUG, | |
# format='%(asctime)s - %(levelname)s - %(message)s', | |
# handlers=[ | |
# logging.StreamHandler(), | |
# logging.FileHandler("app.log", mode='a') | |
# ] | |
# ) | |
# logging.info("Creating the dataset") | |
# main(r"dataset", | |
# file_name="medical_textbook", | |
# save_path=r"dataset" | |
# ) | |
# logging.info("Dataset created successfully") | |
# logging.info("Dataset saved successfully") |