File size: 7,089 Bytes
5e433de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
create chunks and create clusters usign raptor architecture.
"""

import json
import os
import itertools
import logging
from uuid import uuid4

from docling.document_converter import DocumentConverter
from docling_core.experimental.serializer.markdown import MarkdownTableSerializer
from docling_core.transforms.chunker.hierarchical_chunker import ChunkingDocSerializer
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
from docling_core.types.doc.document import DoclingDocument
from docling_core.types.doc.labels import DocItemLabel
from langchain_core.documents import Document
from docling_core.types.doc import ImageRefMode, PictureItem, TableItem

from transformers import AutoTokenizer

# imports from another scripts
def adding_metadata_chunks(chunks: HybridChunker, file_name: str, speciality: str) -> list[Document]:
    """Adding metadata to the chunks
    This function processes a list of chunks and adds metadata to each chunk.

    Args:
        chunks (Hybridchunker): The chunks to be processed.
        file_name (str): The name of the file from which the chunks were created.
        specality (str): specalization of the book.

    Returns:
        List[Document]: A list of Document objects with added metadata.
    """
    documents = []
    for idx, chunk in enumerate(chunks):
        items = chunk.meta.doc_items
        if len(items) == 1 and isinstance(items[0], TableItem):
            # If the chunk is a table, we can skip it
            continue

        main_ref = " ".join([item.get_ref().cref for item in items])
        parent_ref = " ".join([item.parent.get_ref().cref for item in items])
        child_ref = " ".join([str(child) for sublist in [item.children for item in items] for child in sublist])

        text = chunk.text # The text of the chunk
        metadata = {
            "source": file_name,
            "specilization": speciality,
            "chunk_index": idx,
            "self_ref": main_ref,
            "parent_ref": parent_ref,
            "child_ref": child_ref,
            "chunk_type": "text",
            
        }
        document = Document(page_content=text, metadata=metadata)
        documents.append(document)
    return documents


class document_indexing:
    def __init__(self, 
                 docling_converted_document: DocumentConverter,
                 embeddings_model: str, 
                 speciality: str,
                 file_name: str): 
        # convert the document
        self.converted_document = docling_converted_document.document
        # hybrid chunking
        self.embeddings_tokenizer = AutoTokenizer.from_pretrained(embeddings_model)
        self.speciality = speciality
        self.file_name = file_name

    def create_chunks(self):
        chunks = HybridChunker(tokenizer=self.embeddings_tokenizer).chunk(self.converted_document)
        updated_chunks = adding_metadata_chunks(chunks = chunks, 
                                                file_name = self.file_name , 
                                                speciality = self.speciality) 
        return updated_chunks
    
    def extract_all_text(self) -> list[Document]:
        """To exract all the text from the docling document and convert it to langchain 
        document. This is useful for creating a vector store from the text.

        Args:
            docling_document (DocumentConverter): _docling_document_
            file_name (str): name of the file
            medical_specialty (str): book category

        Returns:
            list[Document]: _list of langchain documents_
        """

        documents_list = list()
        for text in self.converted_document.texts:
            content = text.text
            main_ref = ",".join([text.get_ref().cref])
            parent_ref = ",".join([text.parent.get_ref().cref])
            child_ref = ",".join([ref.get_ref().cref for ref in text.children])
            document = Document(page_content=content, metadata={
                "source": self.file_name,
                "chunk_index": None,
                "self_ref": main_ref,
                "parent_ref": parent_ref,
                "child_ref": child_ref,
                "chunk_type": "text",
                "medical_specialty" : self.speciality,
                "reference": None
            })

            documents_list.append(document)
        return documents_list
    
    def extract_tables(self) -> list[Document]:
        """Extract the tables from the converted document and add metadata.

        Args:
            document (DocumentConverter): converted document.
            file_name (str): file name.
            medical_specialty (str): book category
        Returns:
            list[TableItem]: A list of documents containing table data with 
            reference IDs in the metadata.
        """
        tables: list[Document] = []
        for table in self.converted_document.tables:
            if table.label in [DocItemLabel.TABLE]:
                main_ref = ",".join([table.get_ref().cref])
                parent_ref = ",".join([table.parent.get_ref().cref])
                child_ref = ",".join([ref.get_ref().cref for ref in table.children])

                text = table.export_to_markdown()
                metadata = {
                    "source": self.file_name,
                    "chunk_index": None,
                    "self_ref": main_ref,
                    "parent_ref": parent_ref,
                    "child_ref": child_ref,
                    "chunk_type": "table",
                    "medical_specialty" : self.speciality,
                }
                document = Document(page_content=text, metadata=metadata)
                tables.append(document)
        return tables
    
    def extract_images(self) -> list[Document]:
        """Extract the tables from the converted document and add metadata.

        Args:
            document (DocumentConverter): converted document.
            file_name (str): file name.
            medical_specialty (str): book category
        Returns:
            list[TableItem]: A list of documents containing table data with 
            reference IDs in the metadata.
        """
        images: list[Document] = []
        for picture in self.converted_document.pictures:
            if picture.label in [DocItemLabel.PICTURE]:
                main_ref = ",".join([picture.get_ref().cref])
                parent_ref = ",".join([picture.parent.get_ref().cref])
                child_ref = ",".join([ref.get_ref().cref for ref in picture.children])
                metadata = {
                    "source": self.file_name,
                    "chunk_index": None,
                    "self_ref": main_ref,
                    "parent_ref": parent_ref,
                    "child_ref": child_ref,
                    "chunk_type": "table",
                    "medical_specialty" : self.speciality,
                }
                document = Document(page_content=main_ref, metadata=metadata)
                images.append(document)
        return images