Paramasivan Dorai commited on
Commit
d4a2f47
·
1 Parent(s): 60566ea

Update space

Browse files
Files changed (2) hide show
  1. app.py +36 -56
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,63 +1,43 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import gradio as gr
4
+ from transformers import pipeline
5
+
6
+ # Load the summarization pipeline with your pre-trained model
7
+ pipe = pipeline("summarization", model="paramasivan27/bart_for_email_summarization_enron")
8
+
9
+ # Function to summarize email
10
+ def summarize_email(email_body):
11
+ # Tokenize the input text
12
+ pipeline = pipe
13
+ input_tokens = pipeline.tokenizer(email_body, return_tensors='pt', truncation=False)
14
+ input_length = input_tokens['input_ids'].shape[1]
15
+
16
+ # Adjust max_length to be a certain percentage of the input length
17
+ adjusted_max_length = max(10, int(input_length * 0.6)) # Ensure a minimum length
18
+
19
+ # Generate summary with dynamic max_length
20
+ gen_kwargs = {
21
+ "length_penalty": 2.0,
22
+ "num_beams": 4,
23
+ "max_length": adjusted_max_length,
24
+ "min_length": 3
25
+ }
26
+
27
+ summary = pipeline(email_body, **gen_kwargs)[0]['summary_text']
28
+ return summary
29
+
30
+ # Create the Gradio interface
31
+ iface = gr.Interface(
32
+ fn=summarize_email,
33
+ inputs=gr.Textbox(lines=10, placeholder="Enter the email body here..."),
34
+ outputs="text",
35
+ title="Email Subject Line Generator",
36
+ description="Generate a subject line from an email body using GPT-2."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  )
38
 
39
+ # Launch the interface
40
+ iface.launch()
41
 
42
  if __name__ == "__main__":
43
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.22.2
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ transformers
3
+ torch
4
+ gradio