Paramasivan Dorai
commited on
Commit
·
d4a2f47
1
Parent(s):
60566ea
Update space
Browse files- app.py +36 -56
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,63 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Load the summarization pipeline with your pre-trained model
|
7 |
+
pipe = pipeline("summarization", model="paramasivan27/bart_for_email_summarization_enron")
|
8 |
+
|
9 |
+
# Function to summarize email
|
10 |
+
def summarize_email(email_body):
|
11 |
+
# Tokenize the input text
|
12 |
+
pipeline = pipe
|
13 |
+
input_tokens = pipeline.tokenizer(email_body, return_tensors='pt', truncation=False)
|
14 |
+
input_length = input_tokens['input_ids'].shape[1]
|
15 |
+
|
16 |
+
# Adjust max_length to be a certain percentage of the input length
|
17 |
+
adjusted_max_length = max(10, int(input_length * 0.6)) # Ensure a minimum length
|
18 |
+
|
19 |
+
# Generate summary with dynamic max_length
|
20 |
+
gen_kwargs = {
|
21 |
+
"length_penalty": 2.0,
|
22 |
+
"num_beams": 4,
|
23 |
+
"max_length": adjusted_max_length,
|
24 |
+
"min_length": 3
|
25 |
+
}
|
26 |
+
|
27 |
+
summary = pipeline(email_body, **gen_kwargs)[0]['summary_text']
|
28 |
+
return summary
|
29 |
+
|
30 |
+
# Create the Gradio interface
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=summarize_email,
|
33 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter the email body here..."),
|
34 |
+
outputs="text",
|
35 |
+
title="Email Subject Line Generator",
|
36 |
+
description="Generate a subject line from an email body using GPT-2."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
+
# Launch the interface
|
40 |
+
iface.launch()
|
41 |
|
42 |
if __name__ == "__main__":
|
43 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
gradio
|