paragon-analytics commited on
Commit
6fb5242
·
1 Parent(s): b20fb1e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -15
app.py CHANGED
@@ -114,22 +114,26 @@ def process_final_text(text):
114
  word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
115
 
116
  # Paraphraser:
117
- inp_text = "paraphrase: " + X_test + " </s>"
118
-
119
- encoding = para_tokenizer.encode_plus(inp_text,pad_to_max_length=True, return_tensors="pt")
120
- input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
121
-
122
- outputs = para_model.generate(
123
- input_ids=input_ids, attention_mask=attention_masks,
124
- max_length=256,
125
- do_sample=True,
126
- top_k=120,
127
- top_p=0.95,
128
- early_stopping=True,
129
- num_return_sequences=5
130
- )
 
 
 
 
131
 
132
- para_list = [tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) for output in outputs]
133
 
134
  return {"Resilience": float(scores.numpy()[1]), "Non-Resilience": float(scores.numpy()[0])},keywords,NER,word_attributions,para_list
135
 
 
114
  word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
115
 
116
  # Paraphraser:
117
+ batch = para_tokenizer(X_test, return_tensors='pt')
118
+ generated_ids = para_model.generate(batch['input_ids'])
119
+ para_list = para_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
120
+
121
+ # inp_text = "paraphrase: " + X_test + " </s>"
122
+
123
+ # encoding = para_tokenizer.encode_plus(inp_text,pad_to_max_length=True, return_tensors="pt")
124
+ # input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
125
+
126
+ # outputs = para_model.generate(
127
+ # input_ids=input_ids, attention_mask=attention_masks,
128
+ # max_length=256,
129
+ # do_sample=True,
130
+ # top_k=120,
131
+ # top_p=0.95,
132
+ # early_stopping=True,
133
+ # num_return_sequences=5
134
+ # )
135
 
136
+ # para_list = [tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) for output in outputs]
137
 
138
  return {"Resilience": float(scores.numpy()[1]), "Non-Resilience": float(scores.numpy()[0])},keywords,NER,word_attributions,para_list
139