File size: 5,048 Bytes
64c5f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6585483
 
 
 
 
 
 
 
64c5f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6585483
 
 
 
 
64c5f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c2daa
64c5f29
 
 
 
 
 
 
 
bda3b77
64c5f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6aa13d
64c5f29
 
 
bda3b77
64c5f29
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Import packages:

import numpy as np
import matplotlib.pyplot as plt
import re
# tensorflow imports:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import losses
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
from tensorflow.keras.optimizers import RMSprop
# # keras imports:
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding, RepeatVector, TimeDistributed
from keras.preprocessing.text import Tokenizer
from keras_preprocessing import sequence
from tensorflow.keras.utils import to_categorical
from keras.callbacks import EarlyStopping
from keras.models import Sequential
from keras import layers
from keras.backend import clear_session
import pickle
import gradio as gr
import yake
import spacy
from spacy import displacy
import streamlit as st
import spacy_streamlit
nlp = spacy.load('en_core_web_sm')
import torch
import tensorflow as tf
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/bert_resil")

kw_extractor = yake.KeywordExtractor()
custom_kw_extractor = yake.KeywordExtractor(lan="en", n=2, dedupLim=0.2, top=10, features=None)

max_words = 2000
max_len = 111

# load the model from disk
filename = 'resil_lstm_model.sav'
lmodel = pickle.load(open(filename, 'rb'))

# load the model from disk
filename = 'tokenizer.pickle'
tok = pickle.load(open(filename, 'rb'))

def process_final_text(text):
    X_test = str(text).lower()
    l = []
    l.append(X_test)
    test_sequences = tok.texts_to_sequences(l)
    test_sequences_matrix = sequence.pad_sequences(test_sequences,maxlen=max_len)
    lstm_prob = lmodel.predict(test_sequences_matrix.tolist()).flatten()
    lstm_pred = np.where(lstm_prob>=0.5,1,0)
    
    encoded_input = tokenizer(X_test, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = tf.nn.softmax(scores)
    
    # Get Keywords:
    keywords = custom_kw_extractor.extract_keywords(X_test)
    letter = []
    score = []
    for i in keywords:
        if i[1]>0.4:
            a = "+++"
        elif (i[1]<=0.4) and (i[1]>0.1):
            a = "++"
        elif (i[1]<=0.1) and (i[1]>0.01):
            a = "+"
        else: 
            a = "NA"
    
        letter.append(i[0])
        score.append(a)
    
    keywords = [(letter[i], score[i]) for i in range(0, len(letter))]
    
    # Get NER:
        # NER: 
    doc = nlp(text)
    sp_html = displacy.render(doc, style="ent", page=True, jupyter=False)
    NER = (
        ""
        + sp_html
        + ""
    )
    return {"Resilience": float(scores.numpy()[1]), "Non-Resilience": float(scores.numpy()[0])},keywords,NER
    
def main(prob1):
    text = str(prob1)
    obj = process_final_text(text)
    return obj[0],obj[1],obj[2]
    
title = "Welcome to **ResText** 🪐"
description1 = """
This app takes text (up to a few sentences) and predicts whether the text contains resilience messaging. Resilience messaging is a text message that is about being able to a) "adapt to change” and b) “bounce back after illness or hardship". The predictive model is a fine-tuned RoBERTa NLP model. Just add your text and hit Create & Analyze. Or, simply click on one of the examples to see how it works. ✨   
"""

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
    submit_btn = gr.Button("Create & Analyze")
    #text = gr.Textbox(label="Text:",lines=2, placeholder="Please enter text here ...")
    #submit_btn2 = gr.Button("Analyze")

    with gr.Column(visible=True) as output_col:
        label = gr.Label(label = "Predicted Label")
        impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style(
        color_map={"+++": "royalblue","++": "cornflowerblue",
         "+": "lightsteelblue", "NA":"white"})
        NER = gr.HTML(label = 'NER:')

    submit_btn.click(
        main,
        [prob1],
        [label,impplot,NER], api_name="ResText"
    )

    gr.Markdown("### Click on any of the examples below to see how it works:")
    gr.Examples([["Please stay at home and avoid unnecessary trips."],["Please stay at home and avoid unnecessary trips. We will survive this."],["We will survive this."],["Watch today’s news briefing with the latest updates on COVID-19 in Connecticut."],["So let's keep doing what we know works. Let's stay strong, and let's beat this virus. I know we can, and I know we can come out stronger on the other side."]], [prob1], [label,impplot,NER], main, cache_examples=True)
    
demo.launch()