import torch import gradio as gr from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline # 加载模型和处理器 def load_model(model_path, use_gpu=True, use_flash_attention_2=False, use_bettertransformer=False): device = "cuda:0" if torch.cuda.is_available() and use_gpu else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() and use_gpu else torch.float32 processor = AutoProcessor.from_pretrained(model_path) model = AutoModelForSpeechSeq2Seq.from_pretrained( model_path, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2 ) if use_bettertransformer and not use_flash_attention_2: model = model.to_bettertransformer() model.to(device) return processor, model, device, torch_dtype # 初始化模型 processor, model, device, torch_dtype = load_model( model_path=r"panlr/whisper-finetune-teochew", use_gpu=True, use_flash_attention_2=False, use_bettertransformer=False ) # 创建推理管道 infer_pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, torch_dtype=torch_dtype, device=device ) # 定义推理函数 def transcribe_audio(audio_path, num_beams=1): generate_kwargs = {"num_beams": num_beams} forced_decoder_ids = [ (1, processor.tokenizer.encode("<|startoftranscript|>")[0]), (2, processor.tokenizer.encode("<|zh|>")[0]), (3, processor.tokenizer.encode("<|transcribe|>")[0]), ] model.generation_config.forced_decoder_ids = forced_decoder_ids # if language is not None: # generate_kwargs["language"] = language result = infer_pipe(audio_path, return_timestamps=False, generate_kwargs=generate_kwargs) return result['text'] # Gradio 界面 def gradio_interface(audio): return transcribe_audio(audio) # 创建 Gradio 界面 with gr.Blocks() as interface: gr.Markdown("## Whisper 潮汕话-正字 语音转录") audio_input = gr.Audio( sources=["microphone", "upload"], type="filepath", label="输入音频", value="./example.wav" # 指定默认音频文件 ) output_text = gr.Textbox(label="转录结果") # 在输入模块的下方添加说明 gr.Markdown(""" 📢 **使用说明** - 本demo部署在CPU上,所以推理速度较慢。对于比较书面的话语,识别效果还不错,对土话、俗话还需要更多的数据。 - 你可以 **上传音频文件** 或 **使用麦克风** 向模型输入。 - 音频文件最好发音清晰、标准。 - 默认提供一个示例音频,你可以直接点击“提交”查看转录效果。 - 示例音频的对应文本: 【状元 林大钦,兵部尚(siên7)书 翁万达,了佮 工部 左侍郎(se6 neng5) 陈一松,拢是 嘉靖 年间 介 进士】 """) submit_btn = gr.Button("提交") submit_btn.click(gradio_interface, inputs=audio_input, outputs=output_text) # 启动 Gradio 应用 interface.launch()