from fastapi import FastAPI, Response, status from pydantic import BaseModel from hypothesis import BaseModelHypothesis from secondary_model_dependencies import SecondaryModelDependencies from random_forest_model import RandomForestModel from main_model import PredictMainModel import numpy as np from typing import List app = FastAPI() class PredictRequest(BaseModel): question: str answer: str backspace_count: int typing_duration: int letter_click_counts: dict[str, int] gpt35_answer: str gpt4_answer: str class RequestModel(BaseModel): instances: List[PredictRequest] @app.get("/health") async def is_alive(): return Response(status_code=status.HTTP_200_OK) @app.post("/predict") async def predict(request: RequestModel): responses = [process_instance(data) for data in request.instances] return {"predictions": responses} def process_instance(data: PredictRequest): question = data.question answer = data.answer backspace_count = data.backspace_count typing_duration = data.typing_duration letter_click_counts = data.letter_click_counts gpt35_answer = data.gpt35_answer gpt4_answer = data.gpt4_answer # Data preparation for 1st model hypothesis = BaseModelHypothesis() additional_features = hypothesis.calculate_features_dataframe(answer) # 1st model prediction main_model = PredictMainModel() main_model_probability = main_model.predict( answer, additional_features) # Data preparation for 2nd model secondary_model_dependencies = SecondaryModelDependencies() secondary_model_features = secondary_model_dependencies.calculate_features( question, answer, main_model_probability, backspace_count, typing_duration, letter_click_counts, gpt35_answer, gpt4_answer) # 2nd model prediction secondary_model = RandomForestModel() secondary_model_prediction = secondary_model.predict( secondary_model_features) return { "predicted_class": "AI" if secondary_model_prediction == 1 else "HUMAN", "main_model_probability": str(main_model_probability), "secondary_model_prediction": secondary_model_prediction, "confidence": get_confidence(main_model_probability, secondary_model_prediction) } def get_confidence(main_model_output: float, secondary_model_output: int): if (main_model_output >= 0.8 and secondary_model_output == 1) or (main_model_output <= 0.2 and secondary_model_output == 0): return 'High Confidence' elif (0.5 < main_model_output < 0.8 and secondary_model_output == 1) or (0.2 < main_model_output <= 0.5 and secondary_model_output == 0): return 'Partially Confident' else: return 'Low Confidence'