from typing import Dict, List, Union import os from google.cloud import aiplatform from google.protobuf import json_format from google.protobuf.struct_pb2 import Value from google.oauth2 import service_account def predict_custom_trained_model( project: str, endpoint_id: str, instances: Union[Dict, List[Dict]], location: str = "us-central1", api_endpoint: str = "us-central1-aiplatform.googleapis.com", ): """ `instances` can be either single instance of type dict or a list of instances. """ # The AI Platform services require regional API endpoints. client_options = {"api_endpoint": api_endpoint} credentials = service_account.Credentials.from_service_account_file( os.getenv("GOOGLE_APPLICATION_CREDENTIALS")) # Initialize client that will be used to create and send requests. # This client only needs to be created once, and can be reused for multiple requests. client = aiplatform.gapic.PredictionServiceClient( credentials=credentials, client_options=client_options) # The format of each instance should conform to the deployed model's prediction input schema. instances = instances if isinstance(instances, list) else [instances] instances = [ json_format.ParseDict(instance_dict, Value()) for instance_dict in instances ] parameters_dict = {} parameters = json_format.ParseDict(parameters_dict, Value()) endpoint = client.endpoint_path( project=project, location=location, endpoint=endpoint_id ) response = client.predict( endpoint=endpoint, instances=instances, parameters=parameters ) # The predictions are a google.protobuf.Value representation of the model's predictions. predictions = response.predictions return predictions