Spaces:
Running
Running
Commit
·
d9764fe
1
Parent(s):
782aa38
feat: kafka preparation and event loop
Browse files
public-prediction/get_gpt_answer.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
3 |
+
|
4 |
+
|
5 |
+
class GetGPTAnswer:
|
6 |
+
def __init__(self):
|
7 |
+
self.llm_gpt35 = ChatOpenAI(model="gpt-3.5-turbo")
|
8 |
+
self.llm_gpt4 = ChatOpenAI(model="gpt-4-turbo")
|
9 |
+
|
10 |
+
def generate_gpt35_answer(self, question: str):
|
11 |
+
messages = [
|
12 |
+
SystemMessage(
|
13 |
+
content="Please answer the following question based solely on your internal knowledge, without external references. Assume you are the human."),
|
14 |
+
HumanMessage(question)
|
15 |
+
]
|
16 |
+
|
17 |
+
gpt35_answer = self.llm_gpt35.invoke(messages)
|
18 |
+
return gpt35_answer.content
|
19 |
+
|
20 |
+
def generate_gpt4_answer(self, question: str):
|
21 |
+
messages = [
|
22 |
+
SystemMessage(
|
23 |
+
content="Please answer the following question based solely on your internal knowledge, without external references. Assume you are the human."),
|
24 |
+
HumanMessage(question)
|
25 |
+
]
|
26 |
+
|
27 |
+
gpt4_answer = self.llm_gpt4.invoke(messages)
|
28 |
+
return gpt4_answer.content
|
public-prediction/kafka_consumer.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from kafka import KafkaConsumer
|
4 |
+
from get_gpt_answer import GetGPTAnswer
|
5 |
+
from typing import List
|
6 |
+
from concurrent.futures import ThreadPoolExecutor
|
7 |
+
|
8 |
+
|
9 |
+
def get_gpt_responses(data: dict[str, any], gpt_helper: GetGPTAnswer):
|
10 |
+
# data["gpt35_answer"] = gpt_helper.generate_gpt35_answer(data["question"])
|
11 |
+
# data["gpt4_answer"] = gpt_helper.generate_gpt4_answer(data["question"])
|
12 |
+
data["gpt35_answer"] = "This is gpt35 answer"
|
13 |
+
data["gpt4_answer"] = "This is gpt4 answer"
|
14 |
+
return data
|
15 |
+
|
16 |
+
|
17 |
+
def process_batch(batch: List[dict[str, any]], batch_size: int):
|
18 |
+
with ThreadPoolExecutor(max_workers=batch_size) as executor:
|
19 |
+
gpt_helper = GetGPTAnswer()
|
20 |
+
futures = [executor.submit(
|
21 |
+
get_gpt_responses, data, gpt_helper) for data in batch]
|
22 |
+
results = [future.result() for future in futures]
|
23 |
+
|
24 |
+
print("Batch ready with gpt responses", results)
|
25 |
+
|
26 |
+
|
27 |
+
def consume_messages():
|
28 |
+
consumer = KafkaConsumer(
|
29 |
+
"ai-detector",
|
30 |
+
bootstrap_servers=[os.environ.get("KAFKA_IP")],
|
31 |
+
auto_offset_reset='earliest',
|
32 |
+
client_id="ai-detector-1",
|
33 |
+
group_id=None,
|
34 |
+
value_deserializer=lambda x: json.loads(x.decode('utf-8'))
|
35 |
+
)
|
36 |
+
|
37 |
+
BATCH_SIZE = 5
|
38 |
+
|
39 |
+
for message in consumer:
|
40 |
+
full_batch = message.value
|
41 |
+
|
42 |
+
for i in range(0, len(full_batch), BATCH_SIZE):
|
43 |
+
batch = full_batch[i:i+BATCH_SIZE]
|
44 |
+
process_batch(batch, BATCH_SIZE)
|
public-prediction/main.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from kafka_consumer import consume_messages
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
if __name__ == "__main__":
|
5 |
+
load_dotenv()
|
6 |
+
consume_messages()
|
public-prediction/requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
kafka-python
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
langchain-openai
|
5 |
+
python-dotenv
|