Spaces:
Running
Running
Commit
·
8f0525e
1
Parent(s):
236bdc5
fix: prepare next build for nltk fix
Browse files
core-model-prediction/Dockerfile
CHANGED
@@ -10,6 +10,8 @@ COPY . /app
|
|
10 |
# Install any needed packages specified in requirements.txt
|
11 |
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
|
|
|
|
|
13 |
# Make port 8080 available to the world outside this container
|
14 |
EXPOSE 8080
|
15 |
|
|
|
10 |
# Install any needed packages specified in requirements.txt
|
11 |
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
|
13 |
+
RUN python -m nltk.downloader punkt wordnet averaged_perceptron_tagger
|
14 |
+
|
15 |
# Make port 8080 available to the world outside this container
|
16 |
EXPOSE 8080
|
17 |
|
core-model-prediction/hypothesis.py
CHANGED
@@ -14,7 +14,6 @@ import zipfile
|
|
14 |
|
15 |
class BaseModelHypothesis:
|
16 |
def __init__(self):
|
17 |
-
self.download_and_extract_nltk_data()
|
18 |
self.analyzer = SentimentIntensityAnalyzer()
|
19 |
self.lexicon_df = pd.read_csv(
|
20 |
"https://storage.googleapis.com/interview-ai-detector/higher-accuracy-final-model/NRC-Emotion-Lexicon.csv")
|
@@ -49,18 +48,6 @@ class BaseModelHypothesis:
|
|
49 |
self.scaler_not_normalized = joblib.load(
|
50 |
"scalers/scaler-not-normalized.joblib")
|
51 |
|
52 |
-
def download_and_extract_nltk_data(self):
|
53 |
-
nltk.download('punkt')
|
54 |
-
nltk.download('wordnet')
|
55 |
-
nltk.download('averaged_perceptron_tagger')
|
56 |
-
|
57 |
-
wordnet_dir = nltk.data.find("corpora/wordnet").path
|
58 |
-
if not os.path.exists(wordnet_dir):
|
59 |
-
zip_path = os.path.join(
|
60 |
-
os.path.dirname(wordnet_dir), "wordnet.zip")
|
61 |
-
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
62 |
-
zip_ref.extractall(os.path.dirname(wordnet_dir))
|
63 |
-
|
64 |
def process_emotion_lexicon(self):
|
65 |
emotion_lexicon = {}
|
66 |
for _, row in self.lexicon_df.iterrows():
|
|
|
14 |
|
15 |
class BaseModelHypothesis:
|
16 |
def __init__(self):
|
|
|
17 |
self.analyzer = SentimentIntensityAnalyzer()
|
18 |
self.lexicon_df = pd.read_csv(
|
19 |
"https://storage.googleapis.com/interview-ai-detector/higher-accuracy-final-model/NRC-Emotion-Lexicon.csv")
|
|
|
48 |
self.scaler_not_normalized = joblib.load(
|
49 |
"scalers/scaler-not-normalized.joblib")
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def process_emotion_lexicon(self):
|
52 |
emotion_lexicon = {}
|
53 |
for _, row in self.lexicon_df.iterrows():
|