Spaces:
Running
Running
Merge pull request #12 from YakobusIP/main
Browse filesMove production ready deployment from main to production
public-prediction/get_gpt_answer.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
3 |
+
|
4 |
+
|
5 |
+
class GetGPTAnswer:
|
6 |
+
def __init__(self):
|
7 |
+
self.llm_gpt4o = ChatOpenAI(model="gpt-4o")
|
8 |
+
|
9 |
+
def generate_gpt4o_answer(self, question: str):
|
10 |
+
messages = [
|
11 |
+
SystemMessage(
|
12 |
+
content="Please answer the following question based solely on your internal knowledge, without external references. Assume you are the human."),
|
13 |
+
HumanMessage(question)
|
14 |
+
]
|
15 |
+
|
16 |
+
gpt4_answer = self.llm_gpt4o.invoke(messages)
|
17 |
+
return gpt4_answer.content
|
public-prediction/kafka_consumer.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
from kafka import KafkaConsumer
|
5 |
+
from get_gpt_answer import GetGPTAnswer
|
6 |
+
from typing import List
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
from predict_custom_model import predict_custom_trained_model
|
9 |
+
from google.protobuf.json_format import MessageToDict
|
10 |
+
|
11 |
+
|
12 |
+
def get_gpt_responses(data: dict[str, any], gpt_helper: GetGPTAnswer):
|
13 |
+
data["gpt4o_answer"] = gpt_helper.generate_gpt4o_answer(data["question"])
|
14 |
+
return data
|
15 |
+
|
16 |
+
|
17 |
+
def process_batch(batch: List[dict[str, any]], batch_size: int, gpt_helper: GetGPTAnswer):
|
18 |
+
with ThreadPoolExecutor(max_workers=batch_size) as executor:
|
19 |
+
futures = [executor.submit(
|
20 |
+
get_gpt_responses, data, gpt_helper) for data in batch]
|
21 |
+
results = [future.result() for future in futures]
|
22 |
+
|
23 |
+
predictions = predict_custom_trained_model(
|
24 |
+
instances=results, project=os.environ.get("PROJECT_ID"), endpoint_id=os.environ.get("ENDPOINT_ID"))
|
25 |
+
|
26 |
+
results = []
|
27 |
+
for prediction in predictions:
|
28 |
+
result_dict = {}
|
29 |
+
for key, value in prediction._pb.items():
|
30 |
+
# Ensure that 'value' is a protobuf message
|
31 |
+
if hasattr(value, 'DESCRIPTOR'):
|
32 |
+
result_dict[key] = MessageToDict(value)
|
33 |
+
else:
|
34 |
+
print(f"Item {key} is not a convertible protobuf message.")
|
35 |
+
results.append(result_dict)
|
36 |
+
|
37 |
+
return results
|
38 |
+
|
39 |
+
|
40 |
+
def send_results_back(full_results: dict[str, any], job_application_id: str):
|
41 |
+
print(f"Sending results back with job_app_id {job_application_id}")
|
42 |
+
url = "https://ta-2-sistem-cerdas-be-vi2jkj4riq-et.a.run.app/api/anti-cheat/result"
|
43 |
+
headers = {
|
44 |
+
"Content-Type": "application/json",
|
45 |
+
"x-api-key": os.environ.get("X-API-KEY")
|
46 |
+
}
|
47 |
+
|
48 |
+
body = {
|
49 |
+
"job_application_id": job_application_id,
|
50 |
+
"evaluations": full_results
|
51 |
+
}
|
52 |
+
|
53 |
+
response = requests.patch(url, json=body, headers=headers)
|
54 |
+
print(f"Data sent with status code {response.status_code}")
|
55 |
+
print(response.content)
|
56 |
+
|
57 |
+
|
58 |
+
def consume_messages():
|
59 |
+
consumer = KafkaConsumer(
|
60 |
+
"ai-detector",
|
61 |
+
bootstrap_servers=[os.environ.get("KAFKA_IP")],
|
62 |
+
auto_offset_reset='earliest',
|
63 |
+
client_id="ai-detector-1",
|
64 |
+
group_id="ai-detector",
|
65 |
+
)
|
66 |
+
|
67 |
+
print("Successfully connected to Kafka at", os.environ.get("KAFKA_IP"))
|
68 |
+
|
69 |
+
BATCH_SIZE = 5
|
70 |
+
gpt_helper = GetGPTAnswer()
|
71 |
+
|
72 |
+
for message in consumer:
|
73 |
+
try:
|
74 |
+
incoming_message = json.loads(message.value.decode("utf-8"))
|
75 |
+
full_batch = incoming_message["data"]
|
76 |
+
except json.JSONDecodeError:
|
77 |
+
print("Failed to decode JSON from message:", message.value)
|
78 |
+
print("Continuing...")
|
79 |
+
continue
|
80 |
+
|
81 |
+
print("Parsing successful. Processing job_app_id {0}".format(
|
82 |
+
incoming_message['job_application_id']))
|
83 |
+
|
84 |
+
full_results = []
|
85 |
+
for i in range(0, len(full_batch), BATCH_SIZE):
|
86 |
+
batch = full_batch[i:i+BATCH_SIZE]
|
87 |
+
batch_results = process_batch(batch, BATCH_SIZE, gpt_helper)
|
88 |
+
full_results.extend(batch_results)
|
89 |
+
|
90 |
+
send_results_back(full_results, incoming_message["job_application_id"])
|
public-prediction/main.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from kafka_consumer import consume_messages
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
if __name__ == "__main__":
|
5 |
+
load_dotenv()
|
6 |
+
consume_messages()
|
public-prediction/predict_custom_model.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
+
from google.cloud import aiplatform
|
3 |
+
from google.protobuf import json_format
|
4 |
+
from google.protobuf.struct_pb2 import Value
|
5 |
+
from google.oauth2 import service_account
|
6 |
+
|
7 |
+
|
8 |
+
def predict_custom_trained_model(
|
9 |
+
project: str,
|
10 |
+
endpoint_id: str,
|
11 |
+
instances: Union[Dict, List[Dict]],
|
12 |
+
location: str = "us-central1",
|
13 |
+
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
|
14 |
+
):
|
15 |
+
"""
|
16 |
+
`instances` can be either single instance of type dict or a list
|
17 |
+
of instances.
|
18 |
+
"""
|
19 |
+
# The AI Platform services require regional API endpoints.
|
20 |
+
client_options = {"api_endpoint": api_endpoint}
|
21 |
+
|
22 |
+
credentials = service_account.Credentials.from_service_account_file(
|
23 |
+
"steady-climate-416810-ea1536e1868c.json")
|
24 |
+
# Initialize client that will be used to create and send requests.
|
25 |
+
# This client only needs to be created once, and can be reused for multiple requests.
|
26 |
+
client = aiplatform.gapic.PredictionServiceClient(
|
27 |
+
credentials=credentials,
|
28 |
+
client_options=client_options)
|
29 |
+
# The format of each instance should conform to the deployed model's prediction input schema.
|
30 |
+
instances = instances if isinstance(instances, list) else [instances]
|
31 |
+
instances = [
|
32 |
+
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
|
33 |
+
]
|
34 |
+
parameters_dict = {}
|
35 |
+
parameters = json_format.ParseDict(parameters_dict, Value())
|
36 |
+
endpoint = client.endpoint_path(
|
37 |
+
project=project, location=location, endpoint=endpoint_id
|
38 |
+
)
|
39 |
+
response = client.predict(
|
40 |
+
endpoint=endpoint, instances=instances, parameters=parameters
|
41 |
+
)
|
42 |
+
# The predictions are a google.protobuf.Value representation of the model's predictions.
|
43 |
+
predictions = response.predictions
|
44 |
+
|
45 |
+
return predictions
|
public-prediction/requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
kafka-python
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
langchain-openai
|
5 |
+
python-dotenv
|
6 |
+
google-cloud-aiplatform
|
7 |
+
requests
|