bearking58 commited on
Commit
67bae95
·
1 Parent(s): d5114e6

feat: add scalers and model weights

Browse files
hypothesis.py CHANGED
@@ -23,9 +23,9 @@ class BaseModelHypothesis:
23
  self.features_not_normalized = []
24
 
25
  self.scaler_normalized_text_length = joblib.load(
26
- "scaler-normalized-text-length.joblib")
27
  self.scaler_not_normalized = joblib.load(
28
- "scaler-not-normalized.joblib")
29
 
30
  def process_emotion_lexicon(self):
31
  emotion_lexicon = {}
 
23
  self.features_not_normalized = []
24
 
25
  self.scaler_normalized_text_length = joblib.load(
26
+ "scalers/scaler-normalized-text-length.joblib")
27
  self.scaler_not_normalized = joblib.load(
28
+ "scalers/scaler-not-normalized.joblib")
29
 
30
  def process_emotion_lexicon(self):
31
  emotion_lexicon = {}
main_model.py CHANGED
@@ -50,7 +50,7 @@ class PredictMainModel:
50
  self.model = AlbertCustomClassificationHead(
51
  self.albert_model).to(self.device)
52
  # TODO : CHANGE MODEL STATE DICT PATH
53
- self.model.load_state_dict(torch.load("best_model_fold_4.pth"))
54
 
55
  def preprocess_input(self, text: str, additional_features: np.ndarray):
56
  encoding = self.tokenizer.encode_plus(
 
50
  self.model = AlbertCustomClassificationHead(
51
  self.albert_model).to(self.device)
52
  # TODO : CHANGE MODEL STATE DICT PATH
53
+ self.model.load_state_dict(torch.load("models/albert_model.pth"))
54
 
55
  def preprocess_input(self, text: str, additional_features: np.ndarray):
56
  encoding = self.tokenizer.encode_plus(
models/albert_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b203b54caba10e290830cf720c8cd35093a358792e996ee04ee7d8e5e341651
3
+ size 70752187
models/random_forest.joblib ADDED
Binary file (228 kB). View file
 
random_forest_model.py CHANGED
@@ -5,8 +5,8 @@ from typing import List
5
 
6
  class RandomForestModel:
7
  def __init__(self):
8
- self.scaler = joblib.load("rf_scaler.joblib")
9
- self.model = joblib.load("random_forest.joblib")
10
 
11
  def preprocess_input(self, secondary_model_features: List[float]) -> np.ndarray:
12
  return self.scaler.transform(np.array(secondary_model_features).astype(np.float32).reshape(1, -1))
 
5
 
6
  class RandomForestModel:
7
  def __init__(self):
8
+ self.scaler = joblib.load("scalers/rf_scaler.joblib")
9
+ self.model = joblib.load("models/random_forest.joblib")
10
 
11
  def preprocess_input(self, secondary_model_features: List[float]) -> np.ndarray:
12
  return self.scaler.transform(np.array(secondary_model_features).astype(np.float32).reshape(1, -1))
requirements.txt CHANGED
@@ -5,4 +5,5 @@ pandas
5
  textstat
6
  scikit-learn==1.4.1.post1
7
  transformers
8
- fastapi
 
 
5
  textstat
6
  scikit-learn==1.4.1.post1
7
  transformers
8
+ fastapi
9
+ uvicorn
scalers/rf_scaler.joblib ADDED
Binary file (1.17 kB). View file
 
scalers/scaler-normalized-text-length.joblib ADDED
Binary file (1.85 kB). View file
 
scalers/scaler-not-normalized.joblib ADDED
Binary file (1.17 kB). View file