Spaces:
Running
Running
from device_manager import DeviceManager | |
from transformers import AlbertModel, AlbertTokenizerFast | |
import torch.nn as nn | |
import torch | |
import numpy as np | |
import os | |
class AlbertSeparateTransformation(nn.Module): | |
def __init__(self, albert_model, num_additional_features=25, | |
hidden_size_albert=512, hidden_size_additional=128, classifier_hidden_size=256, | |
dropout_rate_albert=0.3, dropout_rate_additional=0.1, dropout_rate_classifier=0.1): | |
super(AlbertSeparateTransformation, self).__init__() | |
self.albert = albert_model | |
# Transform ALBERT's features to an intermediate space | |
self.albert_feature_transform = nn.Sequential( | |
nn.Linear(1024, hidden_size_albert), | |
nn.ReLU(), | |
nn.Dropout(dropout_rate_albert), | |
) | |
# Transform additional features to an intermediate space | |
self.additional_feature_transform = nn.Sequential( | |
nn.Linear(num_additional_features, hidden_size_additional), | |
nn.ReLU(), | |
nn.Dropout(dropout_rate_additional), | |
) | |
# Combine both transformed features and process for final prediction | |
self.classifier = nn.Sequential( | |
nn.Linear(hidden_size_albert + hidden_size_additional, | |
classifier_hidden_size), | |
nn.ReLU(), | |
nn.Dropout(dropout_rate_classifier), | |
nn.Linear(classifier_hidden_size, 1) | |
) | |
def forward(self, input_ids, attention_mask, additional_features): | |
albert_output = self.albert( | |
input_ids=input_ids, attention_mask=attention_mask).pooler_output | |
transformed_albert_features = self.albert_feature_transform( | |
albert_output) | |
transformed_additional_features = self.additional_feature_transform( | |
additional_features) | |
combined_features = torch.cat( | |
(transformed_albert_features, transformed_additional_features), dim=1) | |
logits = self.classifier(combined_features) | |
return logits | |
class PredictMainModel: | |
_instance = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super(PredictMainModel, cls).__new__(cls) | |
cls._instance.initialize() | |
return cls._instance | |
def initialize(self): | |
self.model_name = "albert-large-v2" | |
self.tokenizer = AlbertTokenizerFast.from_pretrained(self.model_name) | |
self.albert_model = AlbertModel.from_pretrained(self.model_name) | |
self.device = DeviceManager() | |
self.model = AlbertSeparateTransformation( | |
self.albert_model).to(self.device) | |
self.model.load_state_dict(torch.load("models/albert_weights.pth", map_location=self.device)) | |
def preprocess_input(self, text: str, additional_features: np.ndarray): | |
encoding = self.tokenizer.encode_plus( | |
text, | |
add_special_tokens=True, | |
max_length=512, | |
return_token_type_ids=False, | |
padding="max_length", | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors="pt" | |
) | |
additional_features_tensor = torch.tensor( | |
additional_features, dtype=torch.float) | |
return { | |
"input_ids": encoding["input_ids"].to(self.device), | |
"attention_mask": encoding["attention_mask"].to(self.device), | |
"additional_features": additional_features_tensor.to(self.device) | |
} | |
def predict(self, text: str, additional_features: np.ndarray) -> float: | |
self.model.eval() | |
with torch.no_grad(): | |
data = self.preprocess_input(text, additional_features) | |
logits = self.model(**data) | |
return torch.sigmoid(logits).cpu().numpy()[0][0] | |