interview-ai-detector / hypothesis.py
panduwana's picture
un-gcp-ize
933b7b6
import nltk
import joblib
import textstat
import pandas as pd
import numpy as np
from typing import List
from collections import defaultdict
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from gemma2b_dependencies import Gemma2BDependencies
from string import punctuation
import os
import zipfile
class BaseModelHypothesis:
def __init__(self):
self.analyzer = SentimentIntensityAnalyzer()
self.lexicon_df = pd.read_csv("NRC-Emotion-Lexicon.csv")
self.emotion_lexicon = self.process_emotion_lexicon()
self.lemmatizer = nltk.stem.WordNetLemmatizer()
self.gemma2bdependencies = Gemma2BDependencies()
self.additional_feature_columns = [
"nn_ratio", "nns_ratio", "jj_ratio", "in_ratio", "dt_ratio", "vb_ratio", "prp_ratio", "rb_ratio",
"compound_score", "gunning_fog", "smog_index", "dale_chall_score",
"negative_emotion_proportions", "positive_emotion_proportions", "fear_emotion_proportions",
"anger_emotion_proportions", "trust_emotion_proportions", "sadness_emotion_proportions",
"disgust_emotion_proportions", "anticipation_emotion_proportions", "joy_emotion_proportions",
"surprise_emotion_proportions", "unique_words_ratio", "perplexity", "burstiness"
]
self.features_normalized_text_length = [
"nn_ratio", "nns_ratio", "jj_ratio", "in_ratio", "dt_ratio", "vb_ratio", "prp_ratio", "rb_ratio",
"negative_emotion_proportions", "positive_emotion_proportions", "fear_emotion_proportions",
"anger_emotion_proportions", "trust_emotion_proportions", "sadness_emotion_proportions",
"disgust_emotion_proportions", "anticipation_emotion_proportions", "joy_emotion_proportions",
"surprise_emotion_proportions", "unique_words_ratio"
]
self.features_not_normalized = [
"compound_score", "gunning_fog", "smog_index", "dale_chall_score",
"perplexity", "burstiness"
]
self.scaler_normalized_text_length = joblib.load(
"scalers/scaler-normalized-text-length.joblib")
self.scaler_not_normalized = joblib.load(
"scalers/scaler-not-normalized.joblib")
def process_emotion_lexicon(self):
emotion_lexicon = {}
for _, row in self.lexicon_df.iterrows():
if row["word"] not in emotion_lexicon:
emotion_lexicon[row["word"]] = []
emotion_lexicon[row["word"]].append(row["emotion"])
return emotion_lexicon
def calculate_features_dataframe(self, text: str) -> np.ndarray:
normalized_text_length_features = self.calculate_normalized_text_length_features(
text)
not_normalized_features = self.calculate_not_normalized_features(text)
all_features = normalized_text_length_features + not_normalized_features
features_df = pd.DataFrame(
[all_features], columns=[
"nn_ratio", "nns_ratio", "jj_ratio", "in_ratio", "dt_ratio", "vb_ratio", "prp_ratio", "rb_ratio",
"negative_emotion_proportions", "positive_emotion_proportions", "fear_emotion_proportions",
"anger_emotion_proportions", "trust_emotion_proportions", "sadness_emotion_proportions",
"disgust_emotion_proportions", "anticipation_emotion_proportions", "joy_emotion_proportions",
"surprise_emotion_proportions", "unique_words_ratio",
"compound_score", "gunning_fog", "smog_index", "dale_chall_score",
"perplexity", "burstiness"
])
# Scaling features
features_df[self.features_normalized_text_length] = self.scaler_normalized_text_length.transform(
features_df[self.features_normalized_text_length])
features_df[self.features_not_normalized] = self.scaler_not_normalized.transform(
features_df[self.features_not_normalized])
ordered_df = features_df[self.additional_feature_columns]
return ordered_df.values.astype(np.float32).reshape(1, -1)
def calculate_normalized_text_length_features(self, text: str) -> List[float]:
pos_features = self.extract_pos_features(text)
emotion_features = self.calculate_emotion_proportions(text)
unique_word_ratio = [self.measure_unique_word_ratio(text)]
features = pos_features + emotion_features + unique_word_ratio
return features
def calculate_not_normalized_features(self, text: str) -> List[float]:
sentiment_intensity = [self.measure_sentiment_intensity(text)]
readability_scores = self.measure_readability(text)
perplexity = [self.gemma2bdependencies.calculate_perplexity(text)]
burstiness = [self.gemma2bdependencies.calculate_burstiness(text)]
features = sentiment_intensity + readability_scores + perplexity + burstiness
return features
def extract_pos_features(self, text: str):
words = nltk.word_tokenize(text)
pos_tags = nltk.pos_tag(words)
desired_tags = ["NN", "NNS", "JJ", "IN", "DT", "VB", "PRP", "RB"]
pos_counts = defaultdict(int, {tag: 0 for tag in desired_tags})
for _, pos in pos_tags:
if pos in pos_counts:
pos_counts[pos] += 1
total_words = len(words)
pos_ratios = [pos_counts[tag] / total_words for tag in desired_tags]
return pos_ratios
def measure_sentiment_intensity(self, text: str):
sentiment = self.analyzer.polarity_scores(text)
return sentiment["compound"]
def measure_readability(self, text: str):
gunning_fog = textstat.gunning_fog(text)
smog_index = textstat.smog_index(text)
dale_chall_score = textstat.dale_chall_readability_score(text)
return [gunning_fog, smog_index, dale_chall_score]
def __penn2morphy(self, penntag):
morphy_tag = {
'NN': 'n', 'NNS': 'n', 'NNP': 'n', 'NNPS': 'n', # Nouns
'JJ': 'a', 'JJR': 'a', 'JJS': 'a', # Adjectives
'VB': 'v', 'VBD': 'v', 'VBG': 'v', 'VBN': 'v', 'VBP': 'v', 'VBZ': 'v', # Verbs
'RB': 'r', 'RBR': 'r', 'RBS': 'r', # Adverbs
# Pronouns, determiners, prepositions, modal verbs
'PRP': 'n', 'PRP$': 'n', 'DT': 'n', 'IN': 'n', 'MD': 'v',
# Others, treated as nouns unless a better fit is found
'CC': 'n', 'CD': 'n', 'EX': 'n', 'FW': 'n', 'POS': 'n', 'TO': 'n', 'WDT': 'n', 'WP': 'n', 'WP$': 'n', 'WRB': 'n', 'PDT': 'n'
}
return morphy_tag.get(penntag[:2], 'n')
def calculate_emotion_proportions(self, text: str):
tokens = nltk.word_tokenize(text)
tagged_tokens = nltk.pos_tag(tokens)
lemmas = [self.lemmatizer.lemmatize(
token.lower(), pos=self.__penn2morphy(tag)) for token, tag in tagged_tokens]
total_lemmas = len(lemmas)
emotion_counts = {emotion: 0 for emotion in [
"negative", "positive", "fear", "anger", "trust", "sadness", "disgust", "anticipation", "joy", "surprise"]}
for lemma in lemmas:
if lemma in self.emotion_lexicon:
for emotion in self.emotion_lexicon[lemma]:
emotion_counts[emotion] += 1
proportions = {emotion: count / total_lemmas for emotion,
count in emotion_counts.items()}
return [
proportions["negative"], proportions["positive"], proportions["fear"], proportions["anger"], proportions["trust"],
proportions["sadness"], proportions["disgust"], proportions["anticipation"], proportions["joy"], proportions["surprise"]
]
def measure_unique_word_ratio(self, text: str):
tokens = nltk.word_tokenize(text.lower())
tokens = [token for token in tokens if token not in punctuation]
total_words = len(tokens)
unique_words = len(set(tokens))
return (unique_words / total_words)