Spaces:
Running
Running
# Use an official Python runtime as a base image | |
FROM pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime | |
# Set the working directory in the container | |
WORKDIR /app | |
# Copy the current directory contents into the container at /app | |
COPY . /app | |
# For Huggingface | |
ENV HF_HOME=/app/.hf_home | |
RUN mkdir .hf_home && chmod -R 777 .hf_home | |
# Install any needed packages specified in requirements.txt | |
RUN pip install --no-cache-dir -r requirements.txt | |
# Download Gemma if needed | |
# if building locally, use the flag: --secret id=dotenv,src=.env | |
# if using HF Spaces, define HUGGINGFACE_TOKEN in Settings -> Variables and secrets | |
RUN --mount=type=secret,id=dotenv \ | |
--mount=type=secret,id=HUGGINGFACE_TOKEN \ | |
python Dockerfile.d/gemma_check.py | |
# Download NLTK data | |
RUN python -m nltk.downloader punkt wordnet averaged_perceptron_tagger | |
RUN mv /root/nltk_data /nltk_data | |
# Unzip wordnet | |
RUN apt-get update && apt-get install -y unzip | |
RUN unzip /nltk_data/corpora/wordnet.zip -d /nltk_data/corpora/ | |
# Run uvicorn | |
EXPOSE 7860 | |
CMD ["uvicorn", "prediction:app", "--host", "0.0.0.0", "--port", "7860"] | |