Spaces:
Running
Running
import json | |
import os | |
import requests | |
from kafka import KafkaConsumer | |
from get_gpt_answer import GetGPTAnswer | |
from typing import List | |
from concurrent.futures import ThreadPoolExecutor | |
from predict_custom_model import predict_custom_trained_model | |
from google.protobuf.json_format import MessageToDict | |
def get_gpt_responses(data: dict[str, any], gpt_helper: GetGPTAnswer): | |
data["gpt4o_answer"] = gpt_helper.generate_gpt4o_answer(data["question"]) | |
return data | |
def process_batch(batch: List[dict[str, any]], batch_size: int, gpt_helper: GetGPTAnswer): | |
with ThreadPoolExecutor(max_workers=batch_size) as executor: | |
futures = [executor.submit( | |
get_gpt_responses, data, gpt_helper) for data in batch] | |
results = [future.result() for future in futures] | |
predictions = predict_custom_trained_model( | |
instances=results, project=os.environ.get("PROJECT_ID"), endpoint_id=os.environ.get("ENDPOINT_ID")) | |
results = [] | |
for prediction in predictions: | |
result_dict = {} | |
for key, value in prediction._pb.items(): | |
# Ensure that 'value' is a protobuf message | |
if hasattr(value, 'DESCRIPTOR'): | |
result_dict[key] = MessageToDict(value) | |
else: | |
print(f"Item {key} is not a convertible protobuf message.") | |
results.append(result_dict) | |
return results | |
def send_results_back(full_results: dict[str, any], job_application_id: str): | |
print(f"Sending results back with job_app_id {job_application_id}") | |
url = "https://ta-2-sistem-cerdas-be-vi2jkj4riq-et.a.run.app/api/anti-cheat/result" | |
headers = { | |
"Content-Type": "application/json", | |
"x-api-key": os.environ.get("X-API-KEY") | |
} | |
body = { | |
"job_application_id": job_application_id, | |
"evaluations": full_results | |
} | |
response = requests.patch(url, json=body, headers=headers) | |
print(f"Data sent with status code {response.status_code}") | |
print(response.content) | |
def consume_messages(): | |
consumer = KafkaConsumer( | |
"ai-detector", | |
bootstrap_servers=[os.environ.get("KAFKA_IP")], | |
auto_offset_reset='earliest', | |
client_id="ai-detector-1", | |
group_id="ai-detector", | |
api_version=(0, 10, 2) | |
) | |
print("Successfully connected to Kafka at", os.environ.get("KAFKA_IP")) | |
BATCH_SIZE = 5 | |
gpt_helper = GetGPTAnswer() | |
for message in consumer: | |
try: | |
incoming_message = json.loads(message.value.decode("utf-8")) | |
full_batch = incoming_message["data"] | |
except json.JSONDecodeError: | |
print("Failed to decode JSON from message:", message.value) | |
print("Continuing...") | |
continue | |
print("Parsing successful. Processing job_app_id {0}".format( | |
incoming_message['job_application_id'])) | |
full_results = [] | |
for i in range(0, len(full_batch), BATCH_SIZE): | |
batch = full_batch[i:i+BATCH_SIZE] | |
batch_results = process_batch(batch, BATCH_SIZE, gpt_helper) | |
full_results.extend(batch_results) | |
send_results_back(full_results, incoming_message["job_application_id"]) | |