Spaces:
Running
Running
from gemma2b_dependencies import Gemma2BDependencies | |
from collections import Counter | |
class RandomForestDependencies: | |
def __init__(self): | |
self.gemma2bdependencies = Gemma2BDependencies() | |
self.random_forest_features = [] | |
def calculate_features(self, question: str, answer: str, probability: float, backspace_count: int, typing_duration: int, letter_click_counts: dict[str, int]): | |
cosine_similarity = self.gemma2bdependencies.calculate_cosine_similarity( | |
question, answer) | |
backspace_count_normalized = backspace_count / len(answer) | |
typing_duration_normalized = typing_duration / len(answer) | |
letter_discrepancy = self.calculate_letter_discrepancy( | |
answer, letter_click_counts) | |
self.random_forest_features = [ | |
cosine_similarity, probability, backspace_count_normalized, | |
typing_duration_normalized, letter_discrepancy | |
] | |
def calculate_letter_discrepancy(self, text: str, letter_click_counts: dict[str, int]): | |
# Calculate letter frequencies in the text | |
text_letter_counts = Counter(text.lower()) | |
# Calculate the ratio of click counts to text counts for each letter, adjusting for letters not in text | |
ratios = [letter_click_counts.get(letter, 0) / (text_letter_counts.get(letter, 0) + 1) | |
for letter in "abcdefghijklmnopqrstuvwxyz"] | |
# Average the ratios and normalize by the length of the text | |
average_ratio = sum(ratios) / len(ratios) | |
discrepancy_ratio_normalized = average_ratio / \ | |
(len(text) if len(text) > 0 else 1) | |
return discrepancy_ratio_normalized | |