Spaces:
Running
Running
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from torch.nn.functional import cosine_similarity | |
from collections import Counter | |
import numpy as np | |
from device_manager import DeviceManager | |
class Gemma2BDependencies: | |
_instance = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super(Gemma2BDependencies, cls).__new__(cls) | |
cls._instance.tokenizer = AutoTokenizer.from_pretrained( | |
"google/gemma-2b") | |
cls._instance.model = AutoModelForCausalLM.from_pretrained( | |
"google/gemma-2b") | |
cls._instance.device = DeviceManager() | |
cls._instance.model.to(cls._instance.device) | |
return cls._instance | |
def calculate_perplexity(self, text: str): | |
inputs = self.tokenizer(text, return_tensors="pt", | |
truncation=True, max_length=1024) | |
inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
# Calculate the model's output | |
with torch.no_grad(): | |
outputs = self.model(**inputs, labels=inputs["input_ids"]) | |
loss = outputs.loss | |
perplexity = torch.exp(loss) | |
return perplexity.item() | |
def calculate_burstiness(self, text: str): | |
# Tokenize the text using GPT-2 tokenizer | |
tokens = self.tokenizer.tokenize(text) | |
# Count token frequencies | |
frequency_counts = list(Counter(tokens).values()) | |
# Calculate variance and mean of frequencies | |
variance = np.var(frequency_counts) | |
mean = np.mean(frequency_counts) | |
# Compute Variance-to-Mean Ratio (VMR) for burstiness | |
vmr = variance / mean if mean > 0 else 0 | |
return vmr | |
def get_embedding(self, text: str): | |
inputs = self.tokenizer(text, return_tensors="pt", | |
truncation=True, max_length=1024) | |
inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = self.model(**inputs, output_hidden_states=True) | |
last_hidden_states = outputs.hidden_states[-1] | |
# Average the token embeddings to get a sentence-level embedding | |
embedding = torch.mean(last_hidden_states, dim=1) | |
return embedding | |
def calculate_cosine_similarity(self, question: str, answer: str): | |
embedding1 = self.get_embedding(question) | |
embedding2 = self.get_embedding(answer) | |
# Ensure the embeddings are in the correct shape for cosine_similarity | |
return cosine_similarity(embedding1, embedding2).item() | |