Spaces:
Running
Running
import json | |
import os | |
from kafka import KafkaConsumer | |
from get_gpt_answer import GetGPTAnswer | |
from typing import List | |
from concurrent.futures import ThreadPoolExecutor | |
def get_gpt_responses(data: dict[str, any], gpt_helper: GetGPTAnswer): | |
# data["gpt35_answer"] = gpt_helper.generate_gpt35_answer(data["question"]) | |
# data["gpt4_answer"] = gpt_helper.generate_gpt4_answer(data["question"]) | |
data["gpt35_answer"] = "This is gpt35 answer" | |
data["gpt4_answer"] = "This is gpt4 answer" | |
return data | |
def process_batch(batch: List[dict[str, any]], batch_size: int): | |
with ThreadPoolExecutor(max_workers=batch_size) as executor: | |
gpt_helper = GetGPTAnswer() | |
futures = [executor.submit( | |
get_gpt_responses, data, gpt_helper) for data in batch] | |
results = [future.result() for future in futures] | |
print("Batch ready with gpt responses", results) | |
def consume_messages(): | |
consumer = KafkaConsumer( | |
"ai-detector", | |
bootstrap_servers=[os.environ.get("KAFKA_IP")], | |
auto_offset_reset='earliest', | |
client_id="ai-detector-1", | |
group_id=None, | |
) | |
print("Successfully connected to Kafka at", os.environ.get("KAFKA_IP")) | |
BATCH_SIZE = 5 | |
for message in consumer: | |
try: | |
full_batch = json.loads(message.value.decode("utf-8")) | |
except json.JSONDecodeError: | |
print("Failed to decode JSON from message:", message.value) | |
print("Continuing...") | |
continue | |
for i in range(0, len(full_batch), BATCH_SIZE): | |
batch = full_batch[i:i+BATCH_SIZE] | |
process_batch(batch, BATCH_SIZE) | |