import streamlit as st import pandas as pd import json import joblib import os # Load models from the "models" folder models_dir = "models" # distilbert_model = joblib.load(os.path.join(models_dir, "distilbert_model.joblib")) bert_topic_model = joblib.load(os.path.join(models_dir, "bertopic_model_max_compressed.joblib")) recommendation_model = joblib.load(os.path.join(models_dir, "recommendation_model.joblib")) # Streamlit app layout st.title("Intelligent Customer Feedback Analyzer") st.write("Analyze customer feedback for sentiment, topics, and get personalized recommendations.") # User input for customer feedback file uploaded_file = st.file_uploader("Upload a Feedback File (CSV, JSON, TXT)", type=["csv", "json", "txt"]) # Function to extract feedback text from different file formats def extract_feedback(file): if file.type == "text/csv": df = pd.read_csv(file) feedback_text = [] for column in df.columns: feedback_text.extend(df[column].dropna().astype(str).tolist()) # Include all text in the CSV return feedback_text elif file.type == "application/json": json_data = json.load(file) feedback_text = [] if isinstance(json_data, list): feedback_text = [item.get('feedback', '') for item in json_data if 'feedback' in item] elif isinstance(json_data, dict): feedback_text = list(json_data.values()) # Include all values if feedback key doesn't exist return feedback_text elif file.type == "text/plain": return [file.getvalue().decode("utf-8")] else: return ["Unsupported file type"] # Display error or feedback extraction status if uploaded_file: feedback_text_list = extract_feedback(uploaded_file) if feedback_text_list: for feedback_text in feedback_text_list: if st.button(f'Analyze Feedback: "{feedback_text[:30]}..."'): # Sentiment Analysis sentiment = distilbert_model.predict([feedback_text])[0] # Get the first result sentiment_result = 'Positive' if sentiment == 1 else 'Negative' st.write(f"Sentiment: {sentiment_result}") # Topic Modeling topics = bert_topic_model.predict([feedback_text])[0] # Get the first topic st.write(f"Predicted Topic(s): {topics}") # Recommendation System recommendations = recommendation_model.predict([feedback_text])[0] # Get the first recommendation st.write(f"Recommended Actions: {recommendations}") else: st.error("Unable to extract feedback from the file.") else: st.info("Please upload a feedback file to analyze.")