panchadip commited on
Commit
e91ee10
·
verified ·
1 Parent(s): 014281e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -6
app.py CHANGED
@@ -1,7 +1,15 @@
1
  import streamlit as st
2
  import pandas as pd
3
- from scripts.load_models import distilbert_model, bert_topic_model, recommendation_model
4
- import gdown
 
 
 
 
 
 
 
 
5
  # Streamlit app layout
6
  st.title("Intelligent Customer Feedback Analyzer")
7
  st.write("Analyze customer feedback for sentiment, topics, and get personalized recommendations.")
@@ -38,19 +46,18 @@ if uploaded_file:
38
  for feedback_text in feedback_text_list:
39
  if st.button(f'Analyze Feedback: "{feedback_text[:30]}..."'):
40
  # Sentiment Analysis
41
- sentiment = distilbert_model.predict([feedback_text])
42
  sentiment_result = 'Positive' if sentiment == 1 else 'Negative'
43
  st.write(f"Sentiment: {sentiment_result}")
44
 
45
  # Topic Modeling
46
- topics = bert_topic_model.predict([feedback_text])
47
  st.write(f"Predicted Topic(s): {topics}")
48
 
49
  # Recommendation System
50
- recommendations = recommendation_model.predict([feedback_text])
51
  st.write(f"Recommended Actions: {recommendations}")
52
  else:
53
  st.error("Unable to extract feedback from the file.")
54
  else:
55
  st.info("Please upload a feedback file to analyze.")
56
-
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import json
4
+ import joblib
5
+ import os
6
+
7
+ # Load models from the "models" folder
8
+ models_dir = "models"
9
+ # distilbert_model = joblib.load(os.path.join(models_dir, "distilbert_model.joblib"))
10
+ bert_topic_model = joblib.load(os.path.join(models_dir, "bert_topic_model.joblib"))
11
+ recommendation_model = joblib.load(os.path.join(models_dir, "recommendation_model.joblib"))
12
+
13
  # Streamlit app layout
14
  st.title("Intelligent Customer Feedback Analyzer")
15
  st.write("Analyze customer feedback for sentiment, topics, and get personalized recommendations.")
 
46
  for feedback_text in feedback_text_list:
47
  if st.button(f'Analyze Feedback: "{feedback_text[:30]}..."'):
48
  # Sentiment Analysis
49
+ sentiment = distilbert_model.predict([feedback_text])[0] # Get the first result
50
  sentiment_result = 'Positive' if sentiment == 1 else 'Negative'
51
  st.write(f"Sentiment: {sentiment_result}")
52
 
53
  # Topic Modeling
54
+ topics = bert_topic_model.predict([feedback_text])[0] # Get the first topic
55
  st.write(f"Predicted Topic(s): {topics}")
56
 
57
  # Recommendation System
58
+ recommendations = recommendation_model.predict([feedback_text])[0] # Get the first recommendation
59
  st.write(f"Recommended Actions: {recommendations}")
60
  else:
61
  st.error("Unable to extract feedback from the file.")
62
  else:
63
  st.info("Please upload a feedback file to analyze.")