import streamlit as st import pandas as pd import json import joblib import gdown import os # Function to download and load model from Google Drive def load_model_from_drive(file_url, model_name): """Downloads the model from Google Drive and loads it.""" # Specify where to save the model model_folder = 'models' if not os.path.exists(model_folder): os.makedirs(model_folder) # Download the model using gdown output_path = os.path.join(model_folder, model_name) gdown.download(file_url, output_path, quiet=False) # Load and return the model using joblib model = joblib.load(output_path) return model # URLs for the models on Google Drive (using file IDs) distilbert_model_url = 'https://drive.google.com/uc?export=download&id=1WfjeGSQ7j4id1VSeGU8s2VzMBzNtImFT' bert_topic_model_url = 'https://drive.google.com/uc?export=download&id=164n8QfrQF4RB2LlQzGe1BbaFmugbzBGR' recommendation_model_url = 'https://drive.google.com/uc?export=download&id=17wFjVd9zTfHG33Eg7378Z6a1reohIkfE' # Model file names distilbert_model_name = 'distilbert_model.joblib' bert_topic_model_name = 'bertopic_model.joblib' recommendation_model_name = 'recommendation_model.joblib' # Load all three models distilbert_model = load_model_from_drive(distilbert_model_url, distilbert_model_name) bert_topic_model = load_model_from_drive(bert_topic_model_url, bert_topic_model_name) recommendation_model = load_model_from_drive(recommendation_model_url, recommendation_model_name) # Streamlit app layout st.title("Intelligent Customer Feedback Analyzer") st.write("Analyze customer feedback for sentiment, topics, and get personalized recommendations.") # User input for customer feedback file uploaded_file = st.file_uploader("Upload a Feedback File (CSV, JSON, TXT)", type=["csv", "json", "txt"]) # Function to extract feedback text from different file formats def extract_feedback(file): if file.type == "text/csv": # If the file is CSV, read it and extract all text content (even if unlabelled) df = pd.read_csv(file) feedback_text = [] for column in df.columns: feedback_text.extend(df[column].dropna().astype(str).tolist()) # Include all text in the CSV return feedback_text elif file.type == "application/json": # If the file is JSON, try to parse and extract the feedback text json_data = json.load(file) feedback_text = [] # Adjust this depending on how the JSON is structured (e.g., each feedback is a list of feedback entries) if isinstance(json_data, list): feedback_text = [item.get('feedback', '') for item in json_data if 'feedback' in item] elif isinstance(json_data, dict): feedback_text = list(json_data.values()) # Include all values if feedback key doesn't exist return feedback_text elif file.type == "text/plain": # If the file is plain text, read it directly return [file.getvalue().decode("utf-8")] else: return ["Unsupported file type"] # Display error or feedback extraction status if uploaded_file: feedback_text_list = extract_feedback(uploaded_file) # If feedback is extracted, analyze it if feedback_text_list: for feedback_text in feedback_text_list: if st.button(f'Analyze Feedback: "{feedback_text[:30]}..."'): # Sentiment Analysis sentiment = distilbert_model.predict([feedback_text]) sentiment_result = 'Positive' if sentiment == 1 else 'Negative' st.write(f"Sentiment: {sentiment_result}") # Topic Modeling topics = bert_topic_model.predict([feedback_text]) st.write(f"Predicted Topic(s): {topics}") # Recommendation System recommendations = recommendation_model.predict([feedback_text]) st.write(f"Recommended Actions: {recommendations}") else: st.error("Unable to extract feedback from the file.") else: st.info("Please upload a feedback file to analyze.")