Heykal Sayid commited on
Commit
39200d2
·
1 Parent(s): 1107e5c

update app

Browse files
Files changed (2) hide show
  1. app.py +28 -53
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,64 +1,39 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ import torch
4
 
5
+ # Model Info
6
+ # model_path_local = '/Users/heykalsayid/Desktop/skill-academy/projects/ai-porto/deployment/app/model/eleutherai-finetuned'
7
+ model_path_hf = 'paacamo/EleutherAI-pythia-1b-finetuned-nvidia-faq' # model from hugging face
 
8
 
9
+ # set tokenizer and model
10
+ tokenizer = AutoTokenizer.from_pretrained(model_path_hf)
11
+ model = AutoModelForCausalLM.from_pretrained(model_path_hf)
12
 
13
+ # set pipeline for text generation
14
+ text_generation = pipeline('text-generation',
15
+ model=model,
16
+ tokenizer=tokenizer,
17
+ device=0 if torch.cuda.is_available() else -1)
 
 
 
 
18
 
 
 
 
 
 
19
 
20
+ def respond_chat(message):
21
+ # prompt from model template for better response
22
+ prompt = f"###Question: {message} \n###Answer:"
23
 
24
+ # response from the model
25
+ response = text_generation(prompt, max_new_tokens=100, do_sample=True)
26
+ return response[0]['generated_text'].split('###Answer:')[1]
27
 
 
 
 
 
 
 
 
 
28
 
29
+ # start gradio interface
30
+ demo = gr.Interface(
31
+ fn=respond_chat,
32
+ inputs='text',
33
+ outputs='text',
34
+ title="NVIDIA FAQ Chatbot",
35
+ description="Ask your question about NVIDIA products and services."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  )
37
 
38
+ # main function to launch the app
39
+ demo.launch(debug=True)
 
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio==5.23.3
3
+