Spaces:
Sleeping
Sleeping
File size: 17,574 Bytes
8a0e084 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import gradio as gr
from app import demo as app
import os
_docs = {'Rerun': {'description': 'Creates a Rerun viewer component that can be used to display the output of a Rerun stream.', 'members': {'__init__': {'value': {'type': 'list[pathlib.Path | str]\n | pathlib.Path\n | str\n | bytes\n | collections.abc.Callable\n | None', 'default': 'None', 'description': 'Takes a singular or list of RRD resources. Each RRD can be a Path, a string containing a url,'}, 'label': {'type': 'str | None', 'default': 'None', 'description': 'The label for this component. Appears above the component and is also used as the header if there'}, 'every': {'type': 'float | None', 'default': 'None', 'description': "If `value` is a callable, run the function 'every' number of seconds while the client connection is"}, 'show_label': {'type': 'bool | None', 'default': 'None', 'description': 'if True, will display label.'}, 'container': {'type': 'bool', 'default': 'True', 'description': 'If True, will place the component in a container providing some extra padding around the border.'}, 'scale': {'type': 'int | None', 'default': 'None', 'description': 'relative size compared to adjacent Components.'}, 'min_width': {'type': 'int', 'default': '160', 'description': 'minimum pixel width, will wrap if not sufficient screen space to satisfy this value.'}, 'height': {'type': 'int | str', 'default': '640', 'description': 'height of component in pixels. If a string is provided, will be interpreted as a CSS value.'}, 'visible': {'type': 'bool', 'default': 'True', 'description': 'If False, component will be hidden.'}, 'streaming': {'type': 'bool', 'default': 'False', 'description': 'If True, the data should be incrementally yielded from the source as `bytes` returned by'}, 'elem_id': {'type': 'str | None', 'default': 'None', 'description': 'An optional string that is assigned as the id of this component in the HTML DOM.'}, 'elem_classes': {'type': 'list[str] | str | None', 'default': 'None', 'description': 'An optional list of strings that are assigned as the classes of this component in'}, 'render': {'type': 'bool', 'default': 'True', 'description': 'If False, component will not render be rendered in the Blocks context.'}, 'panel_states': {'type': 'dict[str, typing.Any] | None', 'default': 'None', 'description': 'Force viewer panels to a specific state.'}}, 'postprocess': {'value': {'type': 'list[pathlib.Path | str] | pathlib.Path | str | bytes', 'description': 'The value to send over to the Rerun viewer on the front-end.'}}, 'preprocess': {'return': {'type': 'RerunData | None', 'description': 'A `RerunData` object.'}, 'value': None}}, 'events': {'play': {'type': None, 'default': None, 'description': 'Fired when timeline playback starts. Callback should accept a parameter of type `gradio_rerun.events.Play`'}, 'pause': {'type': None, 'default': None, 'description': 'Fired when timeline pauseback starts. Callback should accept a parameter of type `gradio_rerun.events.Pause`'}, 'time_update': {'type': None, 'default': None, 'description': 'Fired when time updates. Callback should accept a parameter of type `gradio_rerun.events.TimeUpdate`.'}, 'timeline_change': {'type': None, 'default': None, 'description': 'Fired when a timeline is selected. Callback should accept a parameter of type `gradio_rerun.events.TimelineChange`.'}, 'selection_change': {'type': None, 'default': None, 'description': 'Fired when the selection changes. Callback should accept a parameter of type `gradio_rerun.events.SelectionChange`.'}}}, '__meta__': {'additional_interfaces': {'RerunData': {'source': 'class RerunData(GradioRootModel):\n root: Sequence[FileData | Path | str] | None'}}, 'user_fn_refs': {'Rerun': ['RerunData']}}}
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
with gr.Blocks(
css=abs_path,
theme=gr.themes.Default(
font_mono=[
gr.themes.GoogleFont("Inconsolata"),
"monospace",
],
),
) as demo:
gr.Markdown(
"""
# `gradio_rerun`
<div style="display: flex; gap: 7px;">
<a href="https://pypi.org/project/gradio_rerun/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_rerun"></a> <a href="https://github.com/rerun-io/gradio-rerun-viewer/issues" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/Issues-white?logo=github&logoColor=black"></a> <a href="https://huggingface.co/spaces/rerun/gradio-rerun-viewer/discussions" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%F0%9F%A4%97%20Discuss-%23097EFF?style=flat&logoColor=black"></a>
</div>
Rerun viewer with Gradio
""", elem_classes=["md-custom"], header_links=True)
app.render()
gr.Markdown(
"""
## Installation
```bash
pip install gradio_rerun
```
## Usage
```python
\"\"\"
Demonstrates integrating Rerun visualization with Gradio.
Provides example implementations of data streaming, keypoint annotation, and dynamic
visualization across multiple Gradio tabs using Rerun's recording and visualization capabilities.
\"\"\"
import math
import os
import tempfile
import time
import uuid
import cv2
import gradio as gr
import rerun as rr
import rerun.blueprint as rrb
from color_grid import build_color_grid
from gradio_rerun import Rerun
from gradio_rerun.events import (
SelectionChange,
TimelineChange,
TimeUpdate,
)
# Whenever we need a recording, we construct a new recording stream.
# As long as the app and recording IDs remain the same, the data
# will be merged by the Viewer.
def get_recording(recording_id: str) -> rr.RecordingStream:
return rr.RecordingStream(application_id="rerun_example_gradio", recording_id=recording_id)
# A task can directly log to a binary stream, which is routed to the embedded viewer.
# Incremental chunks are yielded to the viewer using `yield stream.read()`.
#
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
def streaming_repeated_blur(recording_id: str, img):
# Here we get a recording using the provided recording id.
rec = get_recording(recording_id)
stream = rec.binary_stream()
if img is None:
raise gr.Error("Must provide an image to blur.")
blueprint = rrb.Blueprint(
rrb.Horizontal(
rrb.Spatial2DView(origin="image/original"),
rrb.Spatial2DView(origin="image/blurred"),
),
collapse_panels=True,
)
rec.send_blueprint(blueprint)
rec.set_time("iteration", sequence=0)
rec.log("image/original", rr.Image(img))
yield stream.read()
blur = img
for i in range(100):
rec.set_time("iteration", sequence=i)
# Pretend blurring takes a while so we can see streaming in action.
time.sleep(0.1)
blur = cv2.GaussianBlur(blur, (5, 5), 0)
rec.log("image/blurred", rr.Image(blur))
# Each time we yield bytes from the stream back to Gradio, they
# are incrementally sent to the viewer. Make sure to yield any time
# you want the user to be able to see progress.
yield stream.read()
# In this example the user is able to add keypoints to an image visualized in Rerun.
# These keypoints are stored in the global state, we use the session id to keep track of which keypoints belong
# to a specific session (https://www.gradio.app/guides/state-in-blocks).
#
# The current session can be obtained by adding a parameter of type `gradio.Request` to your event listener functions.
Keypoint = tuple[float, float]
keypoints_per_session_per_sequence_index: dict[str, dict[int, list[Keypoint]]] = {}
def get_keypoints_for_user_at_sequence_index(request: gr.Request, sequence: int) -> list[Keypoint]:
per_sequence = keypoints_per_session_per_sequence_index[request.session_hash]
if sequence not in per_sequence:
per_sequence[sequence] = []
return per_sequence[sequence]
def initialize_instance(request: gr.Request) -> None:
keypoints_per_session_per_sequence_index[request.session_hash] = {}
def cleanup_instance(request: gr.Request) -> None:
if request.session_hash in keypoints_per_session_per_sequence_index:
del keypoints_per_session_per_sequence_index[request.session_hash]
# In this function, the `request` and `evt` parameters will be automatically injected by Gradio when this
# event listener is fired.
#
# `SelectionChange` is a subclass of `EventData`: https://www.gradio.app/docs/gradio/eventdata
# `gr.Request`: https://www.gradio.app/main/docs/gradio/request
def register_keypoint(
active_recording_id: str,
current_timeline: str,
current_time: float,
request: gr.Request,
change: SelectionChange,
):
if active_recording_id == "":
return
if current_timeline != "iteration":
return
evt = change.payload
# We can only log a keypoint if the user selected only a single item.
if len(evt.items) != 1:
return
item = evt.items[0]
# If the selected item isn't an entity, or we don't have its position, then bail out.
if item.type != "entity" or item.position is None:
return
# Now we can produce a valid keypoint.
rec = get_recording(active_recording_id)
stream = rec.binary_stream()
# We round `current_time` toward 0, because that gives us the sequence index
# that the user is currently looking at, due to the Viewer's latest-at semantics.
index = math.floor(current_time)
# We keep track of the keypoints per sequence index for each user manually.
keypoints = get_keypoints_for_user_at_sequence_index(request, index)
keypoints.append(item.position[0:2])
rec.set_time("iteration", sequence=index)
rec.log(f"{item.entity_path}/keypoint", rr.Points2D(keypoints, radii=2))
yield stream.read()
def track_current_time(evt: TimeUpdate):
return evt.payload.time
def track_current_timeline_and_time(evt: TimelineChange):
return evt.payload.timeline, evt.payload.time
# However, if you have a workflow that creates an RRD file instead, you can still send it
# directly to the viewer by simply returning the path to the RRD file.
#
# This may be helpful if you need to execute a helper tool written in C++ or Rust that can't
# be easily modified to stream data directly via Gradio.
#
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
# don't accumulate too many temporary files.
@rr.thread_local_stream("rerun_example_cube_rrd")
def create_cube_rrd(x, y, z, pending_cleanup):
cube = build_color_grid(int(x), int(y), int(z), twist=0)
rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))
# Simulate delay
time.sleep(x / 10)
# We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
# any pending files to be cleaned up when the state is deleted.
temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
pending_cleanup.append(temp.name)
blueprint = rrb.Spatial3DView(origin="cube")
rr.save(temp.name, default_blueprint=blueprint)
# Just return the name of the file -- Gradio will convert it to a FileData object
# and send it to the viewer.
return temp.name
def cleanup_cube_rrds(pending_cleanup: list[str]) -> None:
for f in pending_cleanup:
os.unlink(f)
with gr.Blocks() as demo:
with gr.Tab("Streaming"):
with gr.Row():
img = gr.Image(interactive=True, label="Image")
with gr.Column():
stream_blur = gr.Button("Stream Repeated Blur")
with gr.Row():
viewer = Rerun(
streaming=True,
panel_states={
"time": "collapsed",
"blueprint": "hidden",
"selection": "hidden",
},
)
# We make a new recording id, and store it in a Gradio's session state.
recording_id = gr.State(uuid.uuid4())
# Also store the current timeline and time of the viewer in the session state.
current_timeline = gr.State("")
current_time = gr.State(0.0)
# When registering the event listeners, we pass the `recording_id` in as input in order to create
# a recording stream using that id.
stream_blur.click(
# Using the `viewer` as an output allows us to stream data to it by yielding bytes from the callback.
streaming_repeated_blur,
inputs=[recording_id, img],
outputs=[viewer],
)
viewer.selection_change(
register_keypoint,
inputs=[recording_id, current_timeline, current_time],
outputs=[viewer],
)
viewer.time_update(track_current_time, outputs=[current_time])
viewer.timeline_change(track_current_timeline_and_time, outputs=[current_timeline, current_time])
with gr.Tab("Dynamic RRD"):
pending_cleanup = gr.State([], time_to_live=10, delete_callback=cleanup_cube_rrds)
with gr.Row():
x_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="X Count")
y_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="Y Count")
z_count = gr.Number(minimum=1, maximum=10, value=5, precision=0, label="Z Count")
with gr.Row():
create_rrd = gr.Button("Create RRD")
with gr.Row():
viewer = Rerun(
streaming=True,
panel_states={
"time": "collapsed",
"blueprint": "hidden",
"selection": "hidden",
},
)
create_rrd.click(
create_cube_rrd,
inputs=[x_count, y_count, z_count, pending_cleanup],
outputs=[viewer],
)
with gr.Tab("Hosted RRD"):
with gr.Row():
# It may be helpful to point the viewer to a hosted RRD file on another server.
# If an RRD file is hosted via http, you can just return a URL to the file.
choose_rrd = gr.Dropdown(
label="RRD",
choices=[
f"{rr.bindings.get_app_url()}/examples/arkit_scenes.rrd",
f"{rr.bindings.get_app_url()}/examples/dna.rrd",
f"{rr.bindings.get_app_url()}/examples/plots.rrd",
],
)
with gr.Row():
viewer = Rerun(
streaming=True,
panel_states={
"time": "collapsed",
"blueprint": "hidden",
"selection": "hidden",
},
)
choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])
demo.load(initialize_instance)
demo.close(cleanup_instance)
if __name__ == "__main__":
demo.launch()
```
""", elem_classes=["md-custom"], header_links=True)
gr.Markdown("""
## `Rerun`
### Initialization
""", elem_classes=["md-custom"], header_links=True)
gr.ParamViewer(value=_docs["Rerun"]["members"]["__init__"], linkify=['RerunData'])
gr.Markdown("### Events")
gr.ParamViewer(value=_docs["Rerun"]["events"], linkify=['Event'])
gr.Markdown("""
### User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
- **As input:** Is passed, a `RerunData` object.
- **As output:** Should return, the value to send over to the Rerun viewer on the front-end.
```python
def predict(
value: RerunData | None
) -> list[pathlib.Path | str] | pathlib.Path | str | bytes:
return value
```
""", elem_classes=["md-custom", "Rerun-user-fn"], header_links=True)
code_RerunData = gr.Markdown("""
## `RerunData`
```python
class RerunData(GradioRootModel):
root: Sequence[FileData | Path | str] | None
```""", elem_classes=["md-custom", "RerunData"], header_links=True)
demo.load(None, js=r"""function() {
const refs = {
RerunData: [], };
const user_fn_refs = {
Rerun: ['RerunData'], };
requestAnimationFrame(() => {
Object.entries(user_fn_refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}-user-fn`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
Object.entries(refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
})
}
""")
demo.launch()
|