oucgc1996 commited on
Commit
220efe5
·
verified ·
1 Parent(s): cf511c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -11
app.py CHANGED
@@ -24,12 +24,6 @@ def stop_generation():
24
  return "Generation stopped."
25
 
26
  def CTXGen(X0, X1, X2, τ, g_num, model_name):
27
- print(X0)
28
- print(X1)
29
- print(X2)
30
- print(τ)
31
- print(g_num)
32
- print(model_name)
33
  global is_stopped
34
  is_stopped = False
35
 
@@ -41,7 +35,6 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
41
  train_seq = train_seqs['Seq'].tolist()
42
  model = torch.load(save_path, map_location=torch.device('cpu'))
43
  model = model.to(device)
44
- print(model)
45
 
46
  X3 = "X" * len(X0)
47
  msa_data = pd.read_csv('conoData_C0.csv')
@@ -95,6 +88,7 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
95
 
96
  start_time = time.time()
97
  while count < gen_num:
 
98
  if is_stopped:
99
  return pd.DataFrame(), "output.csv"
100
 
@@ -102,7 +96,6 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
102
  break
103
 
104
  seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
105
- print(seq)
106
  vocab_mlm.token_to_idx["X"] = 4
107
 
108
  padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
@@ -110,9 +103,7 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
110
 
111
  gen_length = len(input_text)
112
  length = gen_length - sum(1 for x in input_text if x != '[MASK]')
113
- print(input_text)
114
  for i in range(length):
115
- print(i)
116
  if is_stopped:
117
  return pd.DataFrame(), "output.csv"
118
 
@@ -135,7 +126,6 @@ def CTXGen(X0, X1, X2, τ, g_num, model_name):
135
  new_seq = padded_seq
136
 
137
  generated_seq = input_text
138
- print(generated_seq)
139
 
140
  generated_seq[1] = "[MASK]"
141
  input_ids = vocab_mlm.__getitem__(generated_seq)
 
24
  return "Generation stopped."
25
 
26
  def CTXGen(X0, X1, X2, τ, g_num, model_name):
 
 
 
 
 
 
27
  global is_stopped
28
  is_stopped = False
29
 
 
35
  train_seq = train_seqs['Seq'].tolist()
36
  model = torch.load(save_path, map_location=torch.device('cpu'))
37
  model = model.to(device)
 
38
 
39
  X3 = "X" * len(X0)
40
  msa_data = pd.read_csv('conoData_C0.csv')
 
88
 
89
  start_time = time.time()
90
  while count < gen_num:
91
+ gen_len = len(X0)
92
  if is_stopped:
93
  return pd.DataFrame(), "output.csv"
94
 
 
96
  break
97
 
98
  seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
 
99
  vocab_mlm.token_to_idx["X"] = 4
100
 
101
  padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
 
103
 
104
  gen_length = len(input_text)
105
  length = gen_length - sum(1 for x in input_text if x != '[MASK]')
 
106
  for i in range(length):
 
107
  if is_stopped:
108
  return pd.DataFrame(), "output.csv"
109
 
 
126
  new_seq = padded_seq
127
 
128
  generated_seq = input_text
 
129
 
130
  generated_seq[1] = "[MASK]"
131
  input_ids = vocab_mlm.__getitem__(generated_seq)