File size: 9,999 Bytes
20db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d8fff
 
 
 
 
 
 
20db68b
 
 
 
4e6a9e7
 
 
 
 
 
 
 
 
a4d55f2
 
 
 
 
 
 
20db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9915b0
20db68b
1c09c7c
20db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c09c7c
20db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25bc2a5
20db68b
 
 
 
 
 
f9915b0
20db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cefc0ab
20db68b
 
cefc0ab
20db68b
 
 
81be004
 
20db68b
 
8e62b4b
 
 
 
cefc0ab
471eed2
cd490a5
 
 
471eed2
cd490a5
471eed2
cd490a5
15d8fff
20db68b
27b6e01
975b772
1bee30b
975b772
27b6e01
975b772
a4d55f2
20db68b
 
15d8fff
20db68b
4e6a9e7
15d8fff
20db68b
 
 
 
 
81be004
 
20db68b
15d8fff
20db68b
 
e4fcf38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import random
import pandas as pd
from utils import create_vocab, setup_seed
from dataset_mlm import  get_paded_token_idx_gen, add_tokens_to_vocab
import gradio as gr
from gradio_rangeslider import RangeSlider
import time

is_stopped = False

def temperature_sampling(logits, temperature):
    logits = logits / temperature
    probabilities = torch.softmax(logits, dim=-1)
    sampled_token = torch.multinomial(probabilities, 1)
    return sampled_token

def stop_generation():
    global is_stopped
    is_stopped = True
    return "Generation stopped."

def CTXGen(X1, X2, τ, g_num, length_range, model_name, seed):
    if seed =='random':
        seed = random.randint(0,100000)
        setup_seed(seed)
    else:
        setup_seed(int(seed))
        
    global is_stopped
    is_stopped = False
    start, end = length_range

    device = torch.device("cpu")
    vocab_mlm = create_vocab()
    vocab_mlm = add_tokens_to_vocab(vocab_mlm)
    save_path = model_name
    train_seqs = pd.read_csv('C0_seq.csv')
    train_seq = train_seqs['Seq'].tolist()
    model = torch.load(save_path, map_location=torch.device('cpu'))
    model = model.to(device)

    msa_data = pd.read_csv('conoData_C0.csv') 
    msa = msa_data['Sequences'].tolist()
    msa = [x for x in msa if x.startswith(f"{X1}|{X2}")]
    msa = random.choice(msa)
    X4 = msa.split("|")[3]
    X5 = msa.split("|")[4]
    X6 = msa.split("|")[5]

    model.eval()
    with torch.no_grad():
        IDs = []
        generated_seqs = []
        generated_seqs_FINAL = []
        cls_probability_all = []
        act_probability_all = []

        count = 0
        gen_num = int(g_num)
        NON_AA = ["B","O","U","Z","X",'<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
                        '<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>', 
                        '<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>', 
                        '<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
                        '<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>', 
                        '<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']             
        start_time = time.time()
        while count < gen_num:
            new_seq = None
            if is_stopped:
                return "output.csv", pd.DataFrame()

            if time.time() - start_time > 1200:
                break

            gen_len = random.randint(int(start), int(end))
            X3 = "X" * gen_len
            seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
            vocab_mlm.token_to_idx["X"] = 4

            padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
            input_text = ["[MASK]" if i=="X" else i for i in padded_seq]

            gen_length = len(input_text)
            length = gen_length - sum(1 for x in input_text if x != '[MASK]')

            for i in range(length):
                if is_stopped:
                    return "output.csv", pd.DataFrame()
                
                _, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
                idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
                idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
                attn_idx = torch.tensor(attn_idx).to(device)

                mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
                mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
                
                logits = model(idx_seq,idx_msa, attn_idx) 
                mask_logits = logits[0, mask_position.item(), :] # 

                predicted_token_id = temperature_sampling(mask_logits, τ)

                predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
                input_text[mask_position.item()] = predicted_token
                padded_seq[mask_position.item()] = predicted_token.strip()
                new_seq = padded_seq

            generated_seq = input_text
        
            generated_seq[1] = "[MASK]"
            input_ids = vocab_mlm.__getitem__(generated_seq)
            logits = model(torch.tensor([input_ids]).to(device), idx_msa)
            cls_mask_logits = logits[0, 1, :]
            cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=85)

            generated_seq[2] = "[MASK]"
            input_ids = vocab_mlm.__getitem__(generated_seq)
            logits = model(torch.tensor([input_ids]).to(device), idx_msa)
            act_mask_logits = logits[0, 2, :]
            act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=2)

            cls_pos = vocab_mlm.to_tokens(list(cls_mask_probs))
            act_pos = vocab_mlm.to_tokens(list(act_mask_probs))
            
            if X1 in cls_pos and X2 in act_pos:
                cls_proba = cls_probability[cls_pos.index(X1)].item()
                act_proba = act_probability[act_pos.index(X2)].item()
                generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
                if act_proba>=0.5 and generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
                    generated_seqs.append("".join(generated_seq))
                    if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
                        generated_seqs_FINAL.append("".join(generated_seq))
                        cls_probability_all.append(cls_proba)
                        act_probability_all.append(act_proba)
                        IDs.append(count+1)
                        out = pd.DataFrame({
                            'ID':IDs,
                            'Generated_seq': generated_seqs_FINAL,
                            'Subtype': X1,
                            'Subtype_probability': cls_probability_all, 
                            'Potency': X2, 
                            'Potency_probability': act_probability_all, 
                            'Random_seed': seed
                        })
                        out.to_csv("output.csv", index=False, encoding='utf-8-sig')
                        count += 1
                        yield "output.csv", out
    return "output.csv", out

with gr.Blocks() as demo:
    gr.Markdown("🔗 **[Label Prediction](https://huggingface.co/spaces/oucgc1996/CreoPep_Label_Prediction)**"
                "🔗 **[Unconstrained Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_Unconstrained_generation)**"
                "🔗 **[Conditional Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_conditional_generation)**"
                "🔗 **[Optimization Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_optimization_generation)**")
    gr.Markdown("# Conotoxin Conditional Generation")
    gr.Markdown("#### Input")
    gr.Markdown("✅**Subtype**: subtype of action. For example, α7.")
    gr.Markdown("✅**Potency**: required potency. For example, High.")
    gr.Markdown("✅**τ**: temperature factor controls the diversity of conotoxins generated. The higher the value, the higher the diversity.")
    gr.Markdown("✅**Number of generations**: if it is not completed within 1200 seconds, it will automatically stop.")
    gr.Markdown("✅**Length range**: expected length range of conotoxins generated.")
    gr.Markdown("✅**Model**: model parameters trained at different stages of data augmentation. Please refer to the paper for details.")
    gr.Markdown("✅**Seed**: enter an integer as the random seed to ensure reproducible results. The default is random.")
    
    with gr.Row():
        X1 = gr.Dropdown(choices=['<α7>', '<AChBP>', '<Ca12>', '<Ca13>', '<Ca22>', '<Ca23>', '<GABA>', '<GluN2A>', '<GluN2B>', '<GluN2C>', '<GluN2D>', '<GluN3A>', 
                             '<K11>', '<K12>', '<K13>', '<K16>', '<K17>', '<Kshaker>',
                             '<Na11>', '<Na12>', '<Na13>', '<Na14>', '<Na15>', '<Na16>', '<Na17>', '<Na18>', '<NaTTXR>', '<NaTTXS>', '<NavBh>', '<NET>', 
                             '<α1AAR>', '<α1BAR>', '<α1β1γ>', '<α1β1γδ>', '<α1β1δ>', '<α1β1δε>', '<α1β1ε>', '<α2β2>', '<α2β4>', '<α3β2>', '<α3β4>', 
                             '<α4β2>', '<α4β4>', '<α6α3β2>', '<α6α3β2β3>', '<α6α3β4>', '<α6α3β4β3>', '<α6β3β4>', '<α6β4>', '<α7α6β2>', 
                             '<α75HT3>', '<α9>', '<α9α10>'], label="Subtype")
        X2 = gr.Dropdown(choices=['<high>','<low>'], label="Potency")
        τ = gr.Slider(minimum=1, maximum=2, step=0.1, label="τ")
        g_num = gr.Dropdown(choices=[1, 10, 20, 30, 40, 50], label="Number of generations")
    with gr.Row():
        length_range = RangeSlider(minimum=8, maximum=50, step=1, value=(12, 16), label="Length range")
        model_name = gr.Dropdown(choices=['model_final.pt','model_C1.pt','model_C2.pt','model_C3.pt','model_C4.pt','model_C5.pt','model_mlm.pt'], label="Model")
        seed = gr.Textbox(label="Seed", value="random")
    with gr.Row():
        start_button = gr.Button("Start Generation")
        stop_button = gr.Button("Stop Generation")
    with gr.Row():
        output_file = gr.File(label="Download generated conotoxins")
    with gr.Row():
        output_df = gr.DataFrame(label="Generated Conotoxins")
    
    start_button.click(CTXGen, inputs=[X1, X2, τ, g_num, length_range,model_name,seed], outputs=[output_file, output_df])
    stop_button.click(stop_generation, outputs=None)

demo.launch()