File size: 9,999 Bytes
20db68b 15d8fff 20db68b 4e6a9e7 a4d55f2 20db68b f9915b0 20db68b 1c09c7c 20db68b 1c09c7c 20db68b 25bc2a5 20db68b f9915b0 20db68b cefc0ab 20db68b cefc0ab 20db68b 81be004 20db68b 8e62b4b cefc0ab 471eed2 cd490a5 471eed2 cd490a5 471eed2 cd490a5 15d8fff 20db68b 27b6e01 975b772 1bee30b 975b772 27b6e01 975b772 a4d55f2 20db68b 15d8fff 20db68b 4e6a9e7 15d8fff 20db68b 81be004 20db68b 15d8fff 20db68b e4fcf38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
import random
import pandas as pd
from utils import create_vocab, setup_seed
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
import gradio as gr
from gradio_rangeslider import RangeSlider
import time
is_stopped = False
def temperature_sampling(logits, temperature):
logits = logits / temperature
probabilities = torch.softmax(logits, dim=-1)
sampled_token = torch.multinomial(probabilities, 1)
return sampled_token
def stop_generation():
global is_stopped
is_stopped = True
return "Generation stopped."
def CTXGen(X1, X2, τ, g_num, length_range, model_name, seed):
if seed =='random':
seed = random.randint(0,100000)
setup_seed(seed)
else:
setup_seed(int(seed))
global is_stopped
is_stopped = False
start, end = length_range
device = torch.device("cpu")
vocab_mlm = create_vocab()
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
save_path = model_name
train_seqs = pd.read_csv('C0_seq.csv')
train_seq = train_seqs['Seq'].tolist()
model = torch.load(save_path, map_location=torch.device('cpu'))
model = model.to(device)
msa_data = pd.read_csv('conoData_C0.csv')
msa = msa_data['Sequences'].tolist()
msa = [x for x in msa if x.startswith(f"{X1}|{X2}")]
msa = random.choice(msa)
X4 = msa.split("|")[3]
X5 = msa.split("|")[4]
X6 = msa.split("|")[5]
model.eval()
with torch.no_grad():
IDs = []
generated_seqs = []
generated_seqs_FINAL = []
cls_probability_all = []
act_probability_all = []
count = 0
gen_num = int(g_num)
NON_AA = ["B","O","U","Z","X",'<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']
start_time = time.time()
while count < gen_num:
new_seq = None
if is_stopped:
return "output.csv", pd.DataFrame()
if time.time() - start_time > 1200:
break
gen_len = random.randint(int(start), int(end))
X3 = "X" * gen_len
seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
vocab_mlm.token_to_idx["X"] = 4
padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
input_text = ["[MASK]" if i=="X" else i for i in padded_seq]
gen_length = len(input_text)
length = gen_length - sum(1 for x in input_text if x != '[MASK]')
for i in range(length):
if is_stopped:
return "output.csv", pd.DataFrame()
_, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
attn_idx = torch.tensor(attn_idx).to(device)
mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
logits = model(idx_seq,idx_msa, attn_idx)
mask_logits = logits[0, mask_position.item(), :] #
predicted_token_id = temperature_sampling(mask_logits, τ)
predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
input_text[mask_position.item()] = predicted_token
padded_seq[mask_position.item()] = predicted_token.strip()
new_seq = padded_seq
generated_seq = input_text
generated_seq[1] = "[MASK]"
input_ids = vocab_mlm.__getitem__(generated_seq)
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
cls_mask_logits = logits[0, 1, :]
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=85)
generated_seq[2] = "[MASK]"
input_ids = vocab_mlm.__getitem__(generated_seq)
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
act_mask_logits = logits[0, 2, :]
act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=2)
cls_pos = vocab_mlm.to_tokens(list(cls_mask_probs))
act_pos = vocab_mlm.to_tokens(list(act_mask_probs))
if X1 in cls_pos and X2 in act_pos:
cls_proba = cls_probability[cls_pos.index(X1)].item()
act_proba = act_probability[act_pos.index(X2)].item()
generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
if act_proba>=0.5 and generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
generated_seqs.append("".join(generated_seq))
if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
generated_seqs_FINAL.append("".join(generated_seq))
cls_probability_all.append(cls_proba)
act_probability_all.append(act_proba)
IDs.append(count+1)
out = pd.DataFrame({
'ID':IDs,
'Generated_seq': generated_seqs_FINAL,
'Subtype': X1,
'Subtype_probability': cls_probability_all,
'Potency': X2,
'Potency_probability': act_probability_all,
'Random_seed': seed
})
out.to_csv("output.csv", index=False, encoding='utf-8-sig')
count += 1
yield "output.csv", out
return "output.csv", out
with gr.Blocks() as demo:
gr.Markdown("🔗 **[Label Prediction](https://huggingface.co/spaces/oucgc1996/CreoPep_Label_Prediction)**"
"🔗 **[Unconstrained Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_Unconstrained_generation)**"
"🔗 **[Conditional Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_conditional_generation)**"
"🔗 **[Optimization Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_optimization_generation)**")
gr.Markdown("# Conotoxin Conditional Generation")
gr.Markdown("#### Input")
gr.Markdown("✅**Subtype**: subtype of action. For example, α7.")
gr.Markdown("✅**Potency**: required potency. For example, High.")
gr.Markdown("✅**τ**: temperature factor controls the diversity of conotoxins generated. The higher the value, the higher the diversity.")
gr.Markdown("✅**Number of generations**: if it is not completed within 1200 seconds, it will automatically stop.")
gr.Markdown("✅**Length range**: expected length range of conotoxins generated.")
gr.Markdown("✅**Model**: model parameters trained at different stages of data augmentation. Please refer to the paper for details.")
gr.Markdown("✅**Seed**: enter an integer as the random seed to ensure reproducible results. The default is random.")
with gr.Row():
X1 = gr.Dropdown(choices=['<α7>', '<AChBP>', '<Ca12>', '<Ca13>', '<Ca22>', '<Ca23>', '<GABA>', '<GluN2A>', '<GluN2B>', '<GluN2C>', '<GluN2D>', '<GluN3A>',
'<K11>', '<K12>', '<K13>', '<K16>', '<K17>', '<Kshaker>',
'<Na11>', '<Na12>', '<Na13>', '<Na14>', '<Na15>', '<Na16>', '<Na17>', '<Na18>', '<NaTTXR>', '<NaTTXS>', '<NavBh>', '<NET>',
'<α1AAR>', '<α1BAR>', '<α1β1γ>', '<α1β1γδ>', '<α1β1δ>', '<α1β1δε>', '<α1β1ε>', '<α2β2>', '<α2β4>', '<α3β2>', '<α3β4>',
'<α4β2>', '<α4β4>', '<α6α3β2>', '<α6α3β2β3>', '<α6α3β4>', '<α6α3β4β3>', '<α6β3β4>', '<α6β4>', '<α7α6β2>',
'<α75HT3>', '<α9>', '<α9α10>'], label="Subtype")
X2 = gr.Dropdown(choices=['<high>','<low>'], label="Potency")
τ = gr.Slider(minimum=1, maximum=2, step=0.1, label="τ")
g_num = gr.Dropdown(choices=[1, 10, 20, 30, 40, 50], label="Number of generations")
with gr.Row():
length_range = RangeSlider(minimum=8, maximum=50, step=1, value=(12, 16), label="Length range")
model_name = gr.Dropdown(choices=['model_final.pt','model_C1.pt','model_C2.pt','model_C3.pt','model_C4.pt','model_C5.pt','model_mlm.pt'], label="Model")
seed = gr.Textbox(label="Seed", value="random")
with gr.Row():
start_button = gr.Button("Start Generation")
stop_button = gr.Button("Stop Generation")
with gr.Row():
output_file = gr.File(label="Download generated conotoxins")
with gr.Row():
output_df = gr.DataFrame(label="Generated Conotoxins")
start_button.click(CTXGen, inputs=[X1, X2, τ, g_num, length_range,model_name,seed], outputs=[output_file, output_df])
stop_button.click(stop_generation, outputs=None)
demo.launch() |