oucgc1996 commited on
Commit
5ab3f8b
·
verified ·
1 Parent(s): 965e421

Delete vocab.py

Browse files
Files changed (1) hide show
  1. vocab.py +0 -193
vocab.py DELETED
@@ -1,193 +0,0 @@
1
- import re
2
- import pandas as pd
3
-
4
- class PepVocab:
5
- def __init__(self):
6
- self.token_to_idx = {
7
- '<MASK>': -1, '<PAD>': 0, 'A': 1, 'C': 2, 'E': 3, 'D': 4, 'F': 5, 'I': 6, 'H': 7,
8
- 'K': 8, 'M': 9, 'L': 10, 'N': 11, 'Q': 12, 'P': 13, 'S': 14,
9
- 'R': 15, 'T': 16, 'W': 17, 'V': 18, 'Y': 19, 'G': 20, 'O': 21, 'U': 22, 'Z': 23, 'X': 24}
10
- self.idx_to_token = {
11
- -1: '<MASK>', 0: '<PAD>', 1: 'A', 2: 'C', 3: 'E', 4: 'D', 5: 'F', 6: 'I', 7: 'H',
12
- 8: 'K', 9: 'M', 10: 'L', 11: 'N', 12: 'Q', 13: 'P', 14: 'S',
13
- 15: 'R', 16: 'T', 17: 'W', 18: 'V', 19: 'Y', 20: 'G', 21: 'O', 22: 'U', 23: 'Z', 24: 'X'}
14
-
15
- self.get_attention_mask = False
16
- self.attention_mask = []
17
-
18
- def set_get_attn(self, is_get: bool):
19
- self.get_attention_mask = is_get
20
-
21
- def __len__(self):
22
- return len(self.idx_to_token)
23
-
24
- def __getitem__(self, tokens):
25
- '''
26
- note: input should a splited sequence
27
-
28
- Args:
29
- tokens: a token or token list of splited
30
- '''
31
- if not isinstance(tokens, (list, tuple)):
32
- # return self.token_to_idx.get(tokens)
33
- return self.token_to_idx[tokens]
34
- return [self.__getitem__(token) for token in tokens]
35
-
36
- def vocab_from_txt(self, path):
37
- '''
38
- note: this function use for constructing vocab mapping
39
- but it is only suitable for special txt format
40
- it support one column txt file, which column name is 0
41
- '''
42
- token_to_idx = {}
43
- idx_to_token = {}
44
- chr_idx = pd.read_csv(path, header=None, sep='\t')
45
- if chr_idx.shape[1] == 1:
46
- for idx, token in enumerate(chr_idx[0]):
47
- token_to_idx[token] = idx
48
- idx_to_token[idx] = token
49
- self.token_to_idx = token_to_idx
50
- self.idx_to_token = idx_to_token
51
-
52
- def to_tokens(self, indices):
53
- '''
54
- note: input should a integer list
55
- '''
56
- if hasattr(indices, '__len__') and len(indices) > 1:
57
- return [self.idx_to_token[int(index)] for index in indices]
58
- return self.idx_to_token[indices]
59
-
60
- def add_special_token(self, token: str|list|tuple) -> None:
61
- if not isinstance(token, (list, tuple)):
62
- if token in self.token_to_idx:
63
- raise ValueError(f"token {token} already in the vocab")
64
- self.idx_to_token[len(self.idx_to_token)] = token
65
- self.token_to_idx[token] = len(self.token_to_idx)
66
- else:
67
- [self.add_special_token(t) for t in token]
68
-
69
- def split_seq(self, seq: str|list|tuple) -> list:
70
- if not isinstance(seq, (list, tuple)):
71
- return re.findall(r"<[a-zA-Z0-9]+>|[a-zA-Z-]", seq)
72
- return [self.split_seq(s) for s in seq] # a list of list
73
-
74
- def truncate_pad(self, line, num_steps, padding_token='<PAD>') -> list:
75
-
76
- if not isinstance(line[0], list):
77
- if len(line) > num_steps:
78
- if self.get_attention_mask:
79
- self.attention_mask.append([1]*num_steps)
80
- return line[:num_steps]
81
- if self.get_attention_mask:
82
- self.attention_mask.append([1] * len(line) + [0] * (num_steps - len(line)))
83
- return line + [padding_token] * (num_steps - len(line))
84
- else:
85
- return [self.truncate_pad(l, num_steps, padding_token) for l in line] # a list of list
86
-
87
- def get_attention_mask_mat(self):
88
- attention_mask = self.attention_mask
89
- self.attention_mask = []
90
- return attention_mask
91
-
92
- def seq_to_idx(self, seq: str|list|tuple, num_steps: int, padding_token='<PAD>') -> list:
93
- '''
94
- note: ensure to execut this function after add_special_token
95
- '''
96
-
97
- splited_seq = self.split_seq(seq)
98
- # **********************
99
- # after split, we need to mask sequence
100
- # note:
101
- # 1. mask tokens by probability
102
- # 2. return a list or list of list
103
- # **********************
104
- padded_seq = self.truncate_pad(splited_seq, num_steps, padding_token)
105
-
106
- return self.__getitem__(padded_seq)
107
-
108
-
109
-
110
- class MutilVocab:
111
- def __init__(self, data, AA_tok_len=2):
112
- """
113
- Args:
114
- data (_type_):
115
- AA_tok_len (int, optional): Defaults to 1.
116
- start_token (bool, optional): True is required for encoder-based model.
117
- """
118
- ## Load train dataset
119
- self.x_data = data
120
- self.tok_AA_len = AA_tok_len
121
- self.default_AA = list("RHKDESTNQCGPAVILMFYW")
122
- # AAs which are not included in default_AA
123
- self.tokens = self._token_gen(self.tok_AA_len)
124
-
125
- self.token_to_idx = {k: i + 4 for i, k in enumerate(self.tokens)}
126
- self.token_to_idx["[PAD]"] = 0 ## idx as 0 is PAD
127
- self.token_to_idx["[CLS]"] = 1 ## idx as 1 is CLS
128
- self.token_to_idx["[SEP]"] = 2 ## idx as 2 is SEP
129
- self.token_to_idx["[MASK]"] = 3 ## idx as 3 is MASK
130
-
131
- def split_seq(self):
132
- self.X = [self._seq_to_tok(seq) for seq in self.x_data]
133
- return self.X
134
-
135
- def tok_idx(self, seqs):
136
- '''
137
- note: ensure to execut this function before truancate_pad
138
- '''
139
-
140
- seqs_idx = []
141
- for seq in seqs:
142
- seq_idx = []
143
- for s in seq:
144
- seq_idx.append(self.token_to_idx[s])
145
- seqs_idx.append(seq_idx)
146
-
147
- return seqs_idx
148
-
149
-
150
-
151
- def _token_gen(self, tok_AA_len: int, st: str = "", curr_depth: int = 0):
152
- """Generate tokens based on default amino acid residues
153
- and also includes "X" as arbitrary residues.
154
- Length of AAs in each token should be provided by "tok_AA_len"
155
-
156
- Args:
157
- tok_AA_len (int): Length of token
158
- st (str, optional): Defaults to ''.
159
- curr_depth (int, optional): Defaults to 0.
160
-
161
- Returns:
162
- List: List of tokens
163
- """
164
- curr_depth += 1
165
- if curr_depth <= tok_AA_len:
166
- l = [
167
- st + t
168
- for s in self.default_AA
169
- for t in self._token_gen(tok_AA_len, s, curr_depth)
170
- ]
171
- return l
172
- else:
173
- return [st]
174
-
175
- def _seq_to_tok(self, seq: str):
176
- """Convert each token to index
177
-
178
- Args:
179
- seq (str): AA sequence
180
-
181
- Returns:
182
- list: A list of indexes
183
- """
184
-
185
- seq_idx = []
186
-
187
- seq_idx += ["[CLS]"]
188
-
189
- for i in range(len(seq) - self.tok_AA_len + 1):
190
- curr_token = seq[i : i + self.tok_AA_len]
191
- seq_idx.append(curr_token)
192
- seq_idx += ['[SEP]']
193
- return seq_idx