Upload 10 files
Browse files- C0_seq.csv +631 -0
- app.py +124 -0
- bertmodel.py +199 -0
- conoData_C5.csv +0 -0
- dataset_mlm.py +151 -0
- model.py +174 -0
- requirements.txt +4 -0
- utils.py +132 -0
- vocab.py +193 -0
- vocab.txt +30 -0
C0_seq.csv
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Seq
|
2 |
+
GCCSHPACLVDHPEIC
|
3 |
+
RDPCCYHPTCNMANPQIC
|
4 |
+
GCCSDPRCAYDHPEIC
|
5 |
+
PACCTHPACHVNHPELC
|
6 |
+
GEDEYAEGIREYQLIHGKI
|
7 |
+
RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV
|
8 |
+
GCCSHPACDVDHPEIC
|
9 |
+
RCCTGKKGSCSGRACKNLKCCA
|
10 |
+
GCCSHPACAGNNQHIC
|
11 |
+
TARSSGRYARSPYDRRRRYSRRITDASV
|
12 |
+
GCCSHPVCHARHPALC
|
13 |
+
TSRSSGRYSRSPYDRRRRYARRITDAAV
|
14 |
+
DECCSRPPCRVNNPHVCRRR
|
15 |
+
IRDACCSNPACRVNNPHVC
|
16 |
+
GCCSDPACNVNNPHIC
|
17 |
+
GCCSHPVCRARHPALC
|
18 |
+
GCCLHPACSVNHPELC
|
19 |
+
GCCSHPACNVNNPHICG
|
20 |
+
GEEEVAKMAAELARENIAKGCKVNCYP
|
21 |
+
LPSCCSLALRLCPVPACKRNPCCT
|
22 |
+
GCCSHPACSVRHPELC
|
23 |
+
CCNCSSKWCRDHSRCC
|
24 |
+
QCCSNPPCAHEHC
|
25 |
+
FNWRCCLIPACRRNHKKFC
|
26 |
+
GCCSDPRCLYDHPEIC
|
27 |
+
IRDECCSNPACRVNNPAVC
|
28 |
+
GCCSYPPCFATNPDC
|
29 |
+
ECCNPACGRHYSC
|
30 |
+
VRCLEKSGAQPNKLFRPPCCQKGPSFARHSRCVYYTQSRE
|
31 |
+
CKLKGQSCRKTSYDCCSGSCGRSGKC
|
32 |
+
GEEEYAEFI
|
33 |
+
GCCSNPPCAHEHC
|
34 |
+
CAIPNQKCFQHLDDCCSRKCNRFNKCV
|
35 |
+
GAGCCSHPVCAAMSPIC
|
36 |
+
DPCCYHPTCNMSNPQIC
|
37 |
+
CKPPGSKCSPSMYDCCTTCISYTKRCRKYY
|
38 |
+
CCNCSSKQCRDHSRCC
|
39 |
+
GEEELAEKAAEFARELAN
|
40 |
+
GCCSDPRCRYRC
|
41 |
+
GCCSHPACSVNHPNLC
|
42 |
+
TARSSGRYARSPYDRRRRYCRRITDACV
|
43 |
+
GCCSHPVCNVRHPEIC
|
44 |
+
KPCCSIHDNSCCGA
|
45 |
+
YKLCHPC
|
46 |
+
GCCSHPACNVNNPHIC
|
47 |
+
GACCHPACGKNYSC
|
48 |
+
GCCSHPVCYAMSPIC
|
49 |
+
GCCSHPACSVNAPELC
|
50 |
+
GCCSHPACNVAAPHIC
|
51 |
+
GCCSDPRCNYNHPEIC
|
52 |
+
RCCHPACGKKFNC
|
53 |
+
CRIPNQKCYQHLDDCCSRKCNRFNKCV
|
54 |
+
LPPCCTPPKKHCPAPACKYKPCCKS
|
55 |
+
GCCSHPACYVNHPELC
|
56 |
+
GGGPRIPNQKCFQHLDDCCSRKCNRFNKCVLPET
|
57 |
+
KPCCSIADNSCCGL
|
58 |
+
LPSCCSLNLRLCPVPACRKNPCCT
|
59 |
+
TCRSSGRYCRSPYDRRRRYARRITDAAV
|
60 |
+
KPCCSIHDNSCCGL
|
61 |
+
ARFLHPFQYYTLYRYLTRFLHRYPIYYIRY
|
62 |
+
GCCSNPVCHLAHSNLC
|
63 |
+
GCCSHPVCAAMSPIC
|
64 |
+
GCCSHPACSVNHPEAC
|
65 |
+
DECCSNPACRLNNPHDCRRR
|
66 |
+
IRDECCSNPQCRVNNPHVC
|
67 |
+
IRDECCSNPACRANNPHVC
|
68 |
+
GCCSHPACSVNHPEIC
|
69 |
+
GCCSLPPCALSNPDYC
|
70 |
+
DECCSNPACRLNNPHVCRRR
|
71 |
+
TCRSSGRYCRSPYDRRRRYSRRITDASV
|
72 |
+
GCCSDPRCAWRC
|
73 |
+
GCCSDPRCRYRCR
|
74 |
+
QNCCNGGCSSKWCRDHARCC
|
75 |
+
IRDECCSNPACRVNNPHYC
|
76 |
+
VTDRCCKGKRECGRWCRDHSRCC
|
77 |
+
GCCSHPACSANHPELC
|
78 |
+
GCCSHAACSVNHPELC
|
79 |
+
GRCCHPACGKNYSC
|
80 |
+
GCCSNAVCHLEHSNLC
|
81 |
+
RDCCTPPKKCKDRRCKPLKCCA
|
82 |
+
LHCHEISDLTPWILCSPEPLCGGKGCCAQEVCDCSGPACTCPPCL
|
83 |
+
GCCSDPRCRYRCK
|
84 |
+
GCCKDPRCNYDHPEIC
|
85 |
+
RDPCCSNPVCTVHNPQIC
|
86 |
+
DDESECIINTRDSPWGRCCRTRMCGSMCCPRNGCTCVYHWRRGHGCSCPG
|
87 |
+
RDCCTPPKKAKDRQCKPQRCAA
|
88 |
+
GCCSNPVCHLEHSNLC
|
89 |
+
GCCSNPVCALEHSNLC
|
90 |
+
GCCSHPACIVDHPEIC
|
91 |
+
IRDECCSNAACRVNNPHVC
|
92 |
+
GCCSHPACSVNHAELC
|
93 |
+
QGVCCGSKLCHPC
|
94 |
+
GEPEVAKWAEGLREKAASN
|
95 |
+
GRCCDVPNACSGRWCRDHAQCC
|
96 |
+
RDACCYHPTCNMSNPQIC
|
97 |
+
GCCSTPPCALAC
|
98 |
+
DMCCHPACGKHFNC
|
99 |
+
GCCTHPACHGNHPELC
|
100 |
+
QRLCCGFPKSCRSRQCKPHRCC
|
101 |
+
GCCSHPACSRNHPELC
|
102 |
+
NGRCCHPACGKHFSC
|
103 |
+
TSRSSGRYSRSPYDRRRRYSRRITDASV
|
104 |
+
DEPEYAEAIREYQLKYGKI
|
105 |
+
ACCSDRRCRWRC
|
106 |
+
GCCANPVCALEHSNLC
|
107 |
+
RPECCTHPACHVSHPELC
|
108 |
+
GCCSDPPCRNKHPDLCM
|
109 |
+
GCCSRPPCIANNPDLC
|
110 |
+
ATSGPMGWLPVFYRF
|
111 |
+
TYGIYDAKPPFSCAGLRGGCVLPPNLRPKFKE
|
112 |
+
IRDECCSNPACRVNNPHVC
|
113 |
+
ASGADTCCSNPACQVQHSDLC
|
114 |
+
CGYKLCHPC
|
115 |
+
PCQSVRPGRVWGKCCLTRLCSTMCCARADCTCVYHTWRGHGCSCVM
|
116 |
+
GFRSPCAPFC
|
117 |
+
RGCCNGRGGCSSRWCRDHARCC
|
118 |
+
SGCCSNPACRVDNPNIC
|
119 |
+
RDACTPPKKCKDRQAKPQRCCA
|
120 |
+
CKSPGSSCSPTSYNCCRSCNPYTKRCY
|
121 |
+
PCCYHPTCNMSNPQIC
|
122 |
+
QGVCCGYQLCHPC
|
123 |
+
RDPCCYHPTCNMSNAQIC
|
124 |
+
GCCSHPVCRARHRALC
|
125 |
+
GCCSHPACNVDAPEIC
|
126 |
+
ECCSNPACRVNNPHVC
|
127 |
+
PECCTHPACASHPELC
|
128 |
+
RCCHPACMNHFNC
|
129 |
+
GCCSNPVCHLEHSALC
|
130 |
+
GCCSHPVCSVNHPELC
|
131 |
+
GCCSHAACNVDHPEIC
|
132 |
+
GCCSDPRCGYDHPEIC
|
133 |
+
RDCQEKWEYCIVPIAGFVYCCPGLICGPFVCV
|
134 |
+
GCCSAPACSVNHPELC
|
135 |
+
QGVCCGKKLCHPC
|
136 |
+
DDEEYSEAI
|
137 |
+
PECCTHPACHVSHPELC
|
138 |
+
GCCSHPACSDNHPELC
|
139 |
+
QSPGCCWNPACVKNRC
|
140 |
+
GCCSLPPCRANNPDYC
|
141 |
+
GCCSEPRCRYRCR
|
142 |
+
TARSSGRYCRSPYDRRRRYCRRITDAAV
|
143 |
+
GEEEYSEFI
|
144 |
+
GCCANPVCHLAHSNAC
|
145 |
+
QGVCCGQKLCHPC
|
146 |
+
GCCSDPPCIANNPDLC
|
147 |
+
TSRSSGRYCRSPYDRRRRYCRRITDASV
|
148 |
+
GCCSHPACSVNHSELC
|
149 |
+
GCCRWPCPSRCGMARCCSS
|
150 |
+
GEDDLQDNQDLIRDKSN
|
151 |
+
CCSNPACQVQHSDLC
|
152 |
+
CRIPNQKCFQHLDDCCARKCNRFNKCV
|
153 |
+
GRCCHPACGKNWSC
|
154 |
+
CKSPGTPCSRGMRDCCTSCLLYSNKCRRY
|
155 |
+
IRDECCSAPACRVNNPHVC
|
156 |
+
CKRKGASCRRTSYDCCTGSCRNGKC
|
157 |
+
LASCCSLNLRLCPVPACKRNPCCT
|
158 |
+
GRCCAPACGKNYSC
|
159 |
+
GDEEYSKFIELARENIAKGCKVNCYP
|
160 |
+
QKCCSGGSCPLYFRDRLICPCC
|
161 |
+
GEEELAELAPEFARELAN
|
162 |
+
PACCTHPACHVSHPELC
|
163 |
+
ICCNPACGPHYSC
|
164 |
+
GCCSTPPCSVLYC
|
165 |
+
KACCSIHDNSCCGL
|
166 |
+
KCNFDKCKGTGVYNCGESCSCEGLHSCRCTYNIGSMKSGCACICTYY
|
167 |
+
GWCGDPGATCGKLRLYCCSGFCDCYTKTCKDKSSA
|
168 |
+
RDPCCYHPTCNMSNPQAC
|
169 |
+
GCCSHPVCFAMSPIC
|
170 |
+
GCCSNPVCHLAHSNAC
|
171 |
+
GEEECSEAI
|
172 |
+
RHGCCKGPKGCSSRECRPQHCC
|
173 |
+
GCCSTPPCAVLYC
|
174 |
+
ADEEYLKFIEEQRKQGKLDPTKFP
|
175 |
+
GPPCCLYGSCRPFPGCYNALCCRK
|
176 |
+
CKRKGSSCARTSYDCCTGSCRNGKC
|
177 |
+
IRDECCSNPVCRVNNPHVC
|
178 |
+
GCCSHPACSVNHPELC
|
179 |
+
VCCGYKLCHPC
|
180 |
+
ICCNPACGPNYSC
|
181 |
+
GCCSLPPCAANNPDYC
|
182 |
+
QGVCCGYKLCHEC
|
183 |
+
RDPCCYHPTCNMSNPQIC
|
184 |
+
DMCCHPACMKHFNC
|
185 |
+
GCCSHPVCKAMSPIC
|
186 |
+
PECCTHPACHVSNPELC
|
187 |
+
SGCCSNPACMVNNPNIC
|
188 |
+
GCCSNPVCALEHSNAC
|
189 |
+
GCCSHPACANHPELC
|
190 |
+
TSRSSGRYSRSPYDRRRRYCRRITDACV
|
191 |
+
NGVCCGYKLC
|
192 |
+
GCCSHPACSVNHPDLC
|
193 |
+
GEEEYSEAI
|
194 |
+
GRCCHPACGKNYAC
|
195 |
+
CCSNPACRVNNPHVC
|
196 |
+
GCCSRPPCRLNNPRYC
|
197 |
+
PECCTHPACHVNHPELC
|
198 |
+
IRDECCSNPACRSNNPHVC
|
199 |
+
GGGCCSHPACAANNQDYC
|
200 |
+
GCCSHPACSVNHPQLC
|
201 |
+
QGVCCGRKLCHPC
|
202 |
+
GCCSHPVCNVRHPELC
|
203 |
+
QGCCNVPNGCSGRWCRDHAQCC
|
204 |
+
GRCCHPACGKHFSC
|
205 |
+
GCCSHPACNVDHPEAC
|
206 |
+
DMCCHPACGNHFNC
|
207 |
+
IRDECCSNPACRVNAPHVC
|
208 |
+
RDPCCYHPACNMSNPQIC
|
209 |
+
IRDECCSNPACRYNNPHVC
|
210 |
+
GAGGAAGGCCSHPVCAAMSPIC
|
211 |
+
GCCSHPACSVNHPRLC
|
212 |
+
VKPCRKEGQLCDPIFQNCCRGWNCVLFCV
|
213 |
+
IRDECCSNPACRVNHPHVC
|
214 |
+
GCCSDPRCNMNNPDYC
|
215 |
+
GCCSNPVCHLEHPNAC
|
216 |
+
GCCSDPRCAYRC
|
217 |
+
QGVCCGYKSCHPC
|
218 |
+
APCCSIHDNSCCGL
|
219 |
+
TRLCSTMCCARADCTCVYHTWRGHGCSCVM
|
220 |
+
EACYAPGTFCGIKPGLCCSEFCLPGVCFG
|
221 |
+
SGCCSNPACDVNNPNIC
|
222 |
+
GCCSYPPCFATNPDCAGG
|
223 |
+
GCCSRPPCALNNPDYC
|
224 |
+
TARSSGRYARSPYDRRRRYARRITDAAV
|
225 |
+
GCCSNPACSVNHPELC
|
226 |
+
GCCSHPACADHPEIC
|
227 |
+
TGVCCGYKLCHPC
|
228 |
+
GCCSDPRCRYNHPEIC
|
229 |
+
QGVCCGWKLCHPC
|
230 |
+
GCCSYPPCFATNPDCGGAGGAG
|
231 |
+
RDPCCAHPTCNMSNPQIC
|
232 |
+
LPSCCSLNLRLCPVPACKRNPCCT
|
233 |
+
GCCSHPACSVNNPDIC
|
234 |
+
GCCSAPACNVDHPEIC
|
235 |
+
GCCSNPACHLEHSNLC
|
236 |
+
RDCCTPPKKCKDRQCKPQRCCA
|
237 |
+
GCCSHPVCHARHPELC
|
238 |
+
TCRSSGRYARSPYDRRRRYARRITDACV
|
239 |
+
GCCANPVCHLEHSNLC
|
240 |
+
QGVCCGYKL
|
241 |
+
DDEEYAEFIEQQREAGLV
|
242 |
+
CRIPNQKCFQALDDCCSRKCNRFNKCV
|
243 |
+
GCCSDPPCRNKHPDLC
|
244 |
+
CKGKGASCRRTSYDCCTGSCRSGRC
|
245 |
+
GCCSHPACKVDHPEIC
|
246 |
+
PECCTHPACHGSHPELC
|
247 |
+
DMCCHPACMNHFNC
|
248 |
+
GCCSDPPCRNKHPDLCG
|
249 |
+
GCCSYPPCFATNPDCA
|
250 |
+
CCGVPNAACPPCVCKNTC
|
251 |
+
GRCCHPACGKNASC
|
252 |
+
FPSCCSLNLRLCPVPACKRNPCCT
|
253 |
+
FGVCCGYKLCHPC
|
254 |
+
GCCSNPACMVNNPQIC
|
255 |
+
KPCCSAHDNSCCGL
|
256 |
+
GCCIHPACSVNHPELC
|
257 |
+
IRDECCSNPACANNPHVC
|
258 |
+
HPPCCLYGKCRPFPGCSSASCCQR
|
259 |
+
GCCSHPVCHAMSPIC
|
260 |
+
GRCCHPACGKNHSC
|
261 |
+
CRIPNQKCFQHLDDCCSRACNRFNKCV
|
262 |
+
RDCCSNPPCAHNNPDLC
|
263 |
+
QGVCCGYKLCEPC
|
264 |
+
GGCCSHPVCYTKNPNCG
|
265 |
+
GCCSHPACNVDHAEIC
|
266 |
+
IRDECCSNPACRINNPHVC
|
267 |
+
ACCSDPRCRYRCR
|
268 |
+
SCCARNPACRHNHPCV
|
269 |
+
GCCSHPACAGNNPYFC
|
270 |
+
QRCCNGRRGCSSRWCRDHSRCC
|
271 |
+
GCCSNPVCHAEHSNAC
|
272 |
+
ILRGILRNGVCC
|
273 |
+
QGVCCGYKLCFPC
|
274 |
+
AECCSNPACRVNNPHVC
|
275 |
+
GCCSHPACSTNHPELC
|
276 |
+
GCCSHPVCRAMSPIC
|
277 |
+
RDPCCYHPTCAMSNPQIC
|
278 |
+
ADECCSNPACRVNNPHVC
|
279 |
+
GCCSHPACHLDHPELC
|
280 |
+
GCCSHPVCLAMSPIC
|
281 |
+
QCCSNPPCAHEHCR
|
282 |
+
GCCSHPVCDAMSPIC
|
283 |
+
IRNECCSNPACRVNNPHVC
|
284 |
+
RDPGCCSNPVCHLEHSNLC
|
285 |
+
GPPCCLYGSCRPFPGCSSASCCRK
|
286 |
+
ADCCSNPPCAHNNPDC
|
287 |
+
ECCNPACGRAYSC
|
288 |
+
TCRSSGRYSRSPYDRRRRYSRRITDACV
|
289 |
+
ICCNPACGKKYSC
|
290 |
+
GCCSHPACHLNHPEIC
|
291 |
+
ADPCCYHPTCNMSNPQIC
|
292 |
+
GCCSHPACTVNHPELC
|
293 |
+
GCCSDPPCRNAHPDLC
|
294 |
+
GEEELAEKAPEFARELAN
|
295 |
+
GCCGPYPNAACHPCGCKVGRPPYCDRPSGG
|
296 |
+
QGVCCGYLLCHPC
|
297 |
+
RDPCCYAPTCNMSNPQIC
|
298 |
+
CRIPNQACFQHLDDCCSRKCNRFNKCV
|
299 |
+
RDCQEKWAYCIVPILGFVYCCPGLICGPFVCV
|
300 |
+
RDAATPPKKCKDRQAKPQRACA
|
301 |
+
RIKKPIFIAFPRF
|
302 |
+
GCCSDPRCRYKCR
|
303 |
+
GCCSNPPCIANNPDLC
|
304 |
+
GCCSRPPCILNNPDLC
|
305 |
+
CKGKGAKCSRLMYDCCTGSCRSGKC
|
306 |
+
NGVCCGYK
|
307 |
+
GCCKDPRCAYDHPEIC
|
308 |
+
GCCSDPRCIYDHPEIC
|
309 |
+
GCCVHPACSVNHPELC
|
310 |
+
CRAPNQKCFQHLDDCCSRKCNRFNKCV
|
311 |
+
ACCSHPACNVDHPEIC
|
312 |
+
QGVCCGYKLCHPC
|
313 |
+
VGERCCKNGKRGCGRWCRDHSRCC
|
314 |
+
GCCSDPLCAWRC
|
315 |
+
RDCQKKWKYCIVPILGFVYCCPGLICGPFVCV
|
316 |
+
IRDECCSNPACRVANPHVC
|
317 |
+
IRAECCSNPACRVNNPHVC
|
318 |
+
GCCSHPACNVAHPEIC
|
319 |
+
GCCSDPKCRYRCR
|
320 |
+
GRCCHPACGKAYSC
|
321 |
+
GCCSNPPCAHEHCR
|
322 |
+
GCCSAPPCALYC
|
323 |
+
LPSCCSLNLALCPVPACKRNPCCT
|
324 |
+
QGVCCGYKLCHKC
|
325 |
+
GCCSYPPCFATNPDCGAGAAG
|
326 |
+
GCCSHPACSVNHQELC
|
327 |
+
GCCSHPACDVNHPELC
|
328 |
+
GCCRDPRCNYDHPEIC
|
329 |
+
GCCSHPACSLNHPELC
|
330 |
+
GCCSHPACNVDHPEIC
|
331 |
+
CKRKGSSCRRTSYDCCTGSCRNGKC
|
332 |
+
GCCSHPACSVKHPELC
|
333 |
+
CRIPNQKCFQHLDDCCSRKCNRFNKCV
|
334 |
+
GCCSNPVCHLRHSNLC
|
335 |
+
GCCSLPPCALNNPDYC
|
336 |
+
GCCGSYPNAACHPCSCKDRPSYCGQ
|
337 |
+
GCCSHPACHLNHPELC
|
338 |
+
RDPCCYHPTCNMSAPQIC
|
339 |
+
GCCSDVRCRYRCR
|
340 |
+
GGAAGGGCCSHPVCAAMSPIC
|
341 |
+
GCCSNPVCHAEHSNLC
|
342 |
+
GCCSHPACHARHPELC
|
343 |
+
GCCSHPACSVNHPEVC
|
344 |
+
GCCSHPACWVNNPHIC
|
345 |
+
CCNCSSKRCRDHSRCC
|
346 |
+
RDCQEAWEYCIVPILGFVYCCPGLICGPFVCV
|
347 |
+
CKGKGASCRRTSYDCCTGSCRLGRC
|
348 |
+
GCCSHPACHVNHPELC
|
349 |
+
CKGKGASCRKTSYDCCTGSCRLGRC
|
350 |
+
CKGKGAKCSRLAYDCCTGSCRSGKC
|
351 |
+
IRDQCCSNPACRVNNPHVC
|
352 |
+
ACRKKWEYCIVPIIGFIYCCPGLICGPFVCV
|
353 |
+
QGVCCGFKLCHPC
|
354 |
+
GCCSHPACSGNNPYAC
|
355 |
+
GEEELAEKAEFARELAN
|
356 |
+
GCCSRAACAGIHQELC
|
357 |
+
ACCNPACGRHYSC
|
358 |
+
CKGKGAKCSRIMYDCCTGSCRSGKC
|
359 |
+
GCCSHPACSVEHPELC
|
360 |
+
GCCSAPVCHLEHSNLC
|
361 |
+
GCCSDPRCNYEHPAICGGAAGG
|
362 |
+
GCCSHPACRVNHPELC
|
363 |
+
QGVCCGYELCHPC
|
364 |
+
IRDECCSNPACRVNNPHAC
|
365 |
+
ICCNPACGPKYSC
|
366 |
+
IRDECCSNPSCRVNNPHVC
|
367 |
+
ECCNPACGRHASC
|
368 |
+
DDEEYAEFI
|
369 |
+
MPSCCSLNLRLCPVPACKRNPCCT
|
370 |
+
QGVCCGYKLCQPC
|
371 |
+
GGAAGGCCSHPVCAAMSPIC
|
372 |
+
CCNCSSKECRDHSRCC
|
373 |
+
IRDECCSNPACRVNNPHQC
|
374 |
+
RACCSNPPCAHNNPDC
|
375 |
+
GYKLCHPC
|
376 |
+
NGRCCHPACGKHFNC
|
377 |
+
GCCAYPPCFATNPDC
|
378 |
+
GCCSNPRCAWRC
|
379 |
+
CCNCSSKWCRDHSACC
|
380 |
+
GCCSHPACSVNHPALC
|
381 |
+
GCCSHPACNADHPEIC
|
382 |
+
GCCSHPACNVDHPAIC
|
383 |
+
GDEEYSEFIERERELVSSKIPR
|
384 |
+
GCCSHPACSGANPYFC
|
385 |
+
ARDECCSNPACRVNNPHVC
|
386 |
+
DECCSNPACRVNNPHVCRRR
|
387 |
+
NGVCCGYKLCHPC
|
388 |
+
QGVCCGYKLC
|
389 |
+
GCCSTPPCAALYC
|
390 |
+
GGAGGCCSHPVCAAMSPIC
|
391 |
+
IRDECCSNPTCRVNNPHVC
|
392 |
+
GRCCHAACGKNYSC
|
393 |
+
PECCTHPACHGNHPELC
|
394 |
+
RTCCSRPTCRMEYPELCG
|
395 |
+
RDCQEKWEYCIVPALGFVYCCPGLICGPFVCV
|
396 |
+
RDCQEKWEYCIVPILGFVWCCPGLICGPFVCV
|
397 |
+
GCCSYPPCFATNPDCAGGG
|
398 |
+
AARCCTYHGSCLKEKCRRKYCC
|
399 |
+
GCCSHPACSVNHPERC
|
400 |
+
GCCSHPACSVAHPELC
|
401 |
+
QGVCCGYKLCPPC
|
402 |
+
GCCSDPRCRYQCR
|
403 |
+
QGVCCGYILCHPC
|
404 |
+
GCCSHPACNVNHPELC
|
405 |
+
GCCAHPACSVNHPELC
|
406 |
+
QGCCNGPKGCSSKWCRDHARCC
|
407 |
+
IADECCSNPACRVNNPHVC
|
408 |
+
CCSNPPCAHEHC
|
409 |
+
CCNCSSKWCADHSRCC
|
410 |
+
GCCSYPPCFATNPDCAG
|
411 |
+
GCCSHPACHLEHPELC
|
412 |
+
GCCSDPRCRYDHPEIC
|
413 |
+
GCCTHPACSVNHPELC
|
414 |
+
VGVCCGYKLCHPC
|
415 |
+
RIKKPIFAFPRF
|
416 |
+
GRCCHPACGKNMSC
|
417 |
+
GDEEYSKFIEREREAGRLDLSKFP
|
418 |
+
GFRSACPPFC
|
419 |
+
GEEELQENQELIREKSN
|
420 |
+
GCCSHPACSVNHPELCGRRRRGGCCSHPACSVNHPELC
|
421 |
+
CRIPNQKCFQHLADCCSRKCNRFNKCV
|
422 |
+
GEEELAENQEFARELAN
|
423 |
+
CRIPNQKCFQHLDDCCSRKCNRANKCV
|
424 |
+
IRDECCSNPACRTNNPHVC
|
425 |
+
SGCCSNPACRVQNPNIC
|
426 |
+
GCCSHPACFVNNPHIC
|
427 |
+
GCCAHPACNVDHPEIC
|
428 |
+
IRDECCSNPACRLNNPHVC
|
429 |
+
GCCSNPVCHLEHANLC
|
430 |
+
RDCATPPKKCKDRQCKPQRACA
|
431 |
+
ECCNPACARHYSC
|
432 |
+
GCCSNPVCHLEHSNAC
|
433 |
+
SGCCSNPACRVNNPNIC
|
434 |
+
RDPCCYHATCNMSNPQIC
|
435 |
+
IRDECCSNPACRVNNAHVC
|
436 |
+
CCYHPTCNMSNPQIC
|
437 |
+
IRDECCANPACRVNNPHVC
|
438 |
+
CKRKGSSCRRTAYDCCTGSCRNGKC
|
439 |
+
GCCSDPRCRWRCR
|
440 |
+
SGVCCGYKLCHPC
|
441 |
+
LPSCCALNLRLCPVPACKRNPCCT
|
442 |
+
LPSCCSLNLRLCPVPACARNPCCT
|
443 |
+
CKGKGASCHRTSYDCCTGSCNRGKC
|
444 |
+
LPSCCSLNLRLCPVPACKANPCCT
|
445 |
+
GCCSTPPCALYC
|
446 |
+
SGCCSNPACFVLNPNIC
|
447 |
+
GCCSDPRCAYRCR
|
448 |
+
QGVCCGLKLCHPC
|
449 |
+
GCCSDPRCWYDHPEIC
|
450 |
+
DECCSNPACRLNNPHACRRR
|
451 |
+
CKRKGSSCRRTSYDCCTGSCRSGKC
|
452 |
+
GCCSAPPCALYCG
|
453 |
+
GCCSHPACHARHPALC
|
454 |
+
GEEEYAEKAPEFARELAN
|
455 |
+
GRCCHPACGKYYSC
|
456 |
+
KPSCCSLNLRLCPVPACKRNPCCT
|
457 |
+
GEDDYQDAQDLIRDKSN
|
458 |
+
GFRSPCPPFC
|
459 |
+
GCCSDPRCKYRCR
|
460 |
+
IKDECCSNPACRVNNPHVC
|
461 |
+
GCCSHPACYVNNPHIC
|
462 |
+
EPSCCSLNLRLCPVPACKRNPCCT
|
463 |
+
CCSNPACRVNNPNIC
|
464 |
+
IRDECCSNPACRWNNPHVC
|
465 |
+
CKPPGSKCSPSMRDCCTTCISYTKRCRKYY
|
466 |
+
GCCSNPACMLKNPNLC
|
467 |
+
GCCSDPRCAWEC
|
468 |
+
TCRSSGRYCRSPYDRRRRYCRRITDACV
|
469 |
+
GCCSLPPCRLNNPDYC
|
470 |
+
GCCARAACAGIHQELC
|
471 |
+
CCSDPRCRYDHPEIC
|
472 |
+
AECCTHPACHVSHPELC
|
473 |
+
QGVCCGYKLCLPC
|
474 |
+
CCGVPNAACHPCVCNNTC
|
475 |
+
RDPCCYHPTCNMSNPAIC
|
476 |
+
ACCSDRRCRYRC
|
477 |
+
RDCATPPKKAKDRQCKPQRAAA
|
478 |
+
WNGVCCGYKLCHPC
|
479 |
+
RDPCCYHPTCNASNPQIC
|
480 |
+
CKPPGSPCRVSSYNCCSSCKSYNKKCG
|
481 |
+
CRIPNQKCFQHLDDCCSRKCNRFNACV
|
482 |
+
GCCSDPRCSVNHPELC
|
483 |
+
QGVCCGIKLCHPC
|
484 |
+
RIRKPIFIAFPRF
|
485 |
+
GCCSNPACRVNNPNIC
|
486 |
+
SGSTCTCFTSTNCQGSCECLSPPGCYCSNNGIRQRGCSCTCPGT
|
487 |
+
GCCGKYPNAACHPCGCTVGRPPYCDRPSGG
|
488 |
+
LPSCCSLNLRLCPVPACKRNPCCA
|
489 |
+
GCCSHPVCEAMSPIC
|
490 |
+
CRIPNQKCFAHLDDCCSRKCNRFNKCV
|
491 |
+
GCCSYPPCFATNPDCGGAAG
|
492 |
+
RDCQEKWEYCIVPILGAVYCCPGLICGPFVCV
|
493 |
+
IRNQCCSNPACRVNNPHVC
|
494 |
+
CRIPNQKCFQHLDDCCSRKCNAFNKCV
|
495 |
+
GRCCHPACGANYSC
|
496 |
+
ECCNAACGRHYSC
|
497 |
+
CKGQSCSSCSTKEFCLSKGSRLMYDCCTGSCCGVKTAGVT
|
498 |
+
HPPCCLYGKCRRYPGCSSASCCQR
|
499 |
+
DCCPAKLLCCNP
|
500 |
+
RDACTPPKKAKDRQAKPQRCAA
|
501 |
+
ACCSNPVCHLEHSNLC
|
502 |
+
GCCSHPACSVDHPELC
|
503 |
+
RDCCSNPPCAHNNPDC
|
504 |
+
QGVCCGYKLCHP
|
505 |
+
CCGVPNAACHPCVCTGKC
|
506 |
+
GCCSTPPCAAYC
|
507 |
+
LGVCCGYKLCHPC
|
508 |
+
GCCSHPACNVANPHIC
|
509 |
+
GCCSDPRCFYDHPEIC
|
510 |
+
RDCQAKWEYCIVPILGFVYCCPGLICGPFVCV
|
511 |
+
GCCSHPACSINHPELC
|
512 |
+
CQIPNQKCFQHLDDCCSRKCNRFNKCV
|
513 |
+
GCCSDPRCRYRCGRRRRGGCCSDPRCRYRC
|
514 |
+
LPSCCSLNLRLCAVPACKRNPCCT
|
515 |
+
CKGKGASCRKTSYDCCTGSCRSGRC
|
516 |
+
QGVCCGYKVCHPC
|
517 |
+
GCCSHPACNVNAPHIC
|
518 |
+
GCCSHPACSVNHRELC
|
519 |
+
GCCSHPVCHVRHPELC
|
520 |
+
GGCCSHPACAANNQDYC
|
521 |
+
GVCCGYKLCHPC
|
522 |
+
GCCSDPRCRYRCGGAAGAG
|
523 |
+
CCGVPNAACPPCVCNKTCG
|
524 |
+
CRSSGSPCGVTSICCGRCYRGKCT
|
525 |
+
ACSKKWEYCIVPILGFVYCCPGLICGPFVCV
|
526 |
+
CKRKGSSCRRLSYDCCTGSCRNGKC
|
527 |
+
GCCSNPVCHLEASNLC
|
528 |
+
QGVCCGPKLCHPC
|
529 |
+
LPSCCSLNLRLCPVPACKRNACCT
|
530 |
+
GCCSHPVCSAMSPIC
|
531 |
+
GDEEVSKFIEREREAGRLDLSKFP
|
532 |
+
RDCCSNPPCAANNPDC
|
533 |
+
GCCSHPACGVDHPEIC
|
534 |
+
QGVCCGYKLCHYC
|
535 |
+
CKIPNQKCFQHLDDCCSRKCNRFNKCV
|
536 |
+
GCCADPRCRYRCR
|
537 |
+
CRIPNQRCFQHLDDCCSRKCNRFNKCV
|
538 |
+
RIRKPIFAFPRF
|
539 |
+
GCCSHPACSGNNPYFC
|
540 |
+
GCCSLPPCAASNPDYC
|
541 |
+
GTYLYPFSYYRLWRYFTRFLHKQPYYYVHI
|
542 |
+
GDEEVAKFIEREREAGRLDLSKFP
|
543 |
+
CKSPGSSCSKTSYNCCRSCNPYTKRCY
|
544 |
+
QGVCCGYRLCHPC
|
545 |
+
CCGVPNAACHPCVCKNTC
|
546 |
+
LPACCSLNLRLCPVPACKRNPCCT
|
547 |
+
IRDECCSNPACRFNNPHVC
|
548 |
+
RDCCSNPPCAHNNPD
|
549 |
+
GCCCNPACGPNYGCGTSCS
|
550 |
+
RDPGCCSNPVCHLRHSNLC
|
551 |
+
GCCSDPRCNYDHPEICGRRRRGGCCSDPRCNYDHPEIC
|
552 |
+
ACCSNPACRVNNPHVC
|
553 |
+
GILRNGVCCGYKLCHPC
|
554 |
+
LRNGVCCGYKLCHPC
|
555 |
+
CKGKGASCRKTMYDCCRGSCRSGRC
|
556 |
+
QGVCCGYKLCHDC
|
557 |
+
GCCSHPACSGNNAYFC
|
558 |
+
CKRKGSSCRRASYDCCTGSCRNGKC
|
559 |
+
CKRKGSSCRRTMYDCCTGSCRNGKC
|
560 |
+
CKPPGSKCSPSMRDCCTTCISYTKRCRKYYN
|
561 |
+
YPSCCSLNLRLCPVPACKRNPCCT
|
562 |
+
ECCNPACGAHYSC
|
563 |
+
GCCATPPCALYC
|
564 |
+
GCCSHPACSGNNPAFC
|
565 |
+
AVKKTCIRSTPGSNWGRCCLTKMCHTLCCARSDCTCVYRSGKGHGCSCTS
|
566 |
+
SGCCSNPACRVLNPNIC
|
567 |
+
RDCQEKWEYCIVPILGFVYCCPGLICGPAVCV
|
568 |
+
LPSCCSANLRLCPVPACKRNPCCT
|
569 |
+
APSCCSLNLRLCPVPACKRNPCCT
|
570 |
+
GCCSDPRCRYSHPEIC
|
571 |
+
GPPCCLYGSCRRYPGCYNALCCRK
|
572 |
+
SGCCSHPACRVNNPNIC
|
573 |
+
QGVCCGYKLCWPC
|
574 |
+
CKAKGSSCRRTSYDCCTGSCRNGKC
|
575 |
+
GCCSRPACAGIHQELC
|
576 |
+
PECCTHPACHVSAPELC
|
577 |
+
RAPCCYHPTCNMSNPQIC
|
578 |
+
GHCSDPRFAWRC
|
579 |
+
RDCQEKAEYCIVPILGFVYCCPGLICGPFVCV
|
580 |
+
CKAAGKPCSRLMYDCCTGSCRSGKC
|
581 |
+
GWCGDPGATCGKLRLYCCSGFCDSYTKTCKDKSSA
|
582 |
+
CKRKGSACRRTSYDCCTGSCRNGKC
|
583 |
+
GCCSDPRCRYRHPEIC
|
584 |
+
LPSCCSLNLRLCPAPACKRNPCCT
|
585 |
+
GCCSHPACSGNAPYFC
|
586 |
+
GCCSDPRCRYRCGGAAGG
|
587 |
+
DGVCCGYKLCHPC
|
588 |
+
RDCQEKWEYCIVPILGFVFCCPGLICGPFVCV
|
589 |
+
IRDECCSNPACRVNNPHVCRRR
|
590 |
+
LPSCCSLNLRLCPVPACKRAPCCT
|
591 |
+
HPSCCSLNLRLCPVPACKRNPCCT
|
592 |
+
GCCSDPRCRYRCY
|
593 |
+
QGVCCGYKICHPC
|
594 |
+
ECCNPACGRHYAC
|
595 |
+
CKGKGAKCSRLMYNCCTGSCRSGKC
|
596 |
+
GGVCCGYKLCHPC
|
597 |
+
CKGTGKSCSRIAYNCCTGSCRSGKC
|
598 |
+
CKRKGSSCRRTSYDCCTGSCRAGKC
|
599 |
+
AGVCCGYKLCHPC
|
600 |
+
QGVCCGYKRCHPC
|
601 |
+
GCCSHPVCTAMSPIC
|
602 |
+
CLSPGSSCSPTSYNCCRSCNPYSRKC
|
603 |
+
CKRKGSSCSRTSYDCCTGSCRNGKC
|
604 |
+
IRDECCSNPACRVNNPHNC
|
605 |
+
GGAGCCSHPVCAAMSPIC
|
606 |
+
RDAATPPKKAKDRQAKPQRAAA
|
607 |
+
RPSCCSLNLRLCPVPACKRNPCCT
|
608 |
+
GCCSHPACAANNQDYC
|
609 |
+
GCCSYPPCFATNPDCAGAGA
|
610 |
+
RGVCCGYKLCHPC
|
611 |
+
QGVCCGEKLCHPC
|
612 |
+
CKGKGSSCRRTSYDCCTGSCRNGKC
|
613 |
+
QGVCCGYWLCHPC
|
614 |
+
IRDECCSNPACRVNKPHVC
|
615 |
+
QGVCCGYKLCRPC
|
616 |
+
LPSCCSLNARLCPVPACKRNPCCT
|
617 |
+
CRIPNQKCFQHLDDCCSAKCNRFNKCV
|
618 |
+
KGVCCGYKLCHPC
|
619 |
+
CKSKGAKCSRLMYDCCSGSCSGTVGRC
|
620 |
+
QGVCCGYKLCYPC
|
621 |
+
CRIPNAKCFQHLDDCCSRKCNRFNKCV
|
622 |
+
CKGKGAKCSKLMYDCCTGSCRSGKC
|
623 |
+
FPRPRICNLACRAGIGHKYPFCHCR
|
624 |
+
QGVCCGYKQCHPC
|
625 |
+
CKGKGAKCSRIAYNCCTGSCRSGKC
|
626 |
+
CRIPNQKCAQHLDDCCSRKCNRFNKCV
|
627 |
+
IGVCCGYKLCHPC
|
628 |
+
RDCQEKWEYCIVPILGFAYCCPGLICGPFVCV
|
629 |
+
IPSCCSLNLRLCPVPACKRNPCCT
|
630 |
+
ECCAPACGRHYSC
|
631 |
+
QGVCCGYKPCHPC
|
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from utils import create_vocab, setup_seed
|
6 |
+
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
|
7 |
+
|
8 |
+
seed = random.randint(0,99999999)
|
9 |
+
|
10 |
+
setup_seed(seed)
|
11 |
+
device = torch.device("cpu")
|
12 |
+
vocab_mlm = create_vocab()
|
13 |
+
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
|
14 |
+
save_path = 'mlm-model-27.pt' #1
|
15 |
+
train_seqs = pd.read_csv('C0_seq.csv') #2
|
16 |
+
train_seq = train_seqs['Seq'].tolist()
|
17 |
+
model = torch.load(save_path, weights_only=False, map_location=torch.device('cpu'))
|
18 |
+
model = model.to(device)
|
19 |
+
|
20 |
+
def temperature_sampling(logits, temperature):
|
21 |
+
logits = logits / temperature
|
22 |
+
probabilities = torch.softmax(logits, dim=-1)
|
23 |
+
sampled_token = torch.multinomial(probabilities, 1)
|
24 |
+
return sampled_token
|
25 |
+
|
26 |
+
def CTXGen(τ, g_num, start, end):
|
27 |
+
X1 = "X"
|
28 |
+
X2 = "X"
|
29 |
+
X4 = ""
|
30 |
+
X5 = ""
|
31 |
+
X6 = ""
|
32 |
+
model.eval()
|
33 |
+
with torch.no_grad():
|
34 |
+
new_seq = None
|
35 |
+
generated_seqs = []
|
36 |
+
generated_seqs_FINAL = []
|
37 |
+
cls_pos_all = []
|
38 |
+
cls_probability_all = []
|
39 |
+
act_pos_all = []
|
40 |
+
act_probability_all = []
|
41 |
+
|
42 |
+
count = 0
|
43 |
+
gen_num = int(g_num)
|
44 |
+
NON_AA = ["B","O","U","Z","X",'<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
|
45 |
+
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
|
46 |
+
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
|
47 |
+
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
|
48 |
+
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
|
49 |
+
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>','[UNK]','[SEP]','[PAD]','[CLS]','[MASK]']
|
50 |
+
|
51 |
+
while count < gen_num:
|
52 |
+
gen_len = random.randint(int(start), int(end))
|
53 |
+
X3 = "X" * gen_len
|
54 |
+
seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
|
55 |
+
vocab_mlm.token_to_idx["X"] = 4
|
56 |
+
|
57 |
+
padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
|
58 |
+
input_text = ["[MASK]" if i=="X" else i for i in padded_seq]
|
59 |
+
|
60 |
+
gen_length = len(input_text)
|
61 |
+
length = gen_length - sum(1 for x in input_text if x != '[MASK]')
|
62 |
+
|
63 |
+
for i in range(length):
|
64 |
+
_, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
|
65 |
+
idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
|
66 |
+
idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
|
67 |
+
attn_idx = torch.tensor(attn_idx).to(device)
|
68 |
+
|
69 |
+
mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
|
70 |
+
mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
|
71 |
+
|
72 |
+
logits = model(idx_seq,idx_msa, attn_idx)
|
73 |
+
mask_logits = logits[0, mask_position.item(), :]
|
74 |
+
|
75 |
+
predicted_token_id = temperature_sampling(mask_logits, τ)
|
76 |
+
|
77 |
+
predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
|
78 |
+
input_text[mask_position.item()] = predicted_token
|
79 |
+
padded_seq[mask_position.item()] = predicted_token.strip()
|
80 |
+
new_seq = padded_seq
|
81 |
+
|
82 |
+
generated_seq = input_text
|
83 |
+
|
84 |
+
generated_seq[1] = "[MASK]"
|
85 |
+
generated_seq[2] = "[MASK]"
|
86 |
+
input_ids = vocab_mlm.__getitem__(generated_seq)
|
87 |
+
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
|
88 |
+
|
89 |
+
cls_mask_logits = logits[0, 1, :]
|
90 |
+
act_mask_logits = logits[0, 2, :]
|
91 |
+
|
92 |
+
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=1)
|
93 |
+
act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=1)
|
94 |
+
|
95 |
+
cls_pos = vocab_mlm.idx_to_token[cls_mask_probs[0].item()]
|
96 |
+
act_pos = vocab_mlm.idx_to_token[act_mask_probs[0].item()]
|
97 |
+
|
98 |
+
cls_probability = cls_probability[0].item()
|
99 |
+
act_probability = act_probability[0].item()
|
100 |
+
generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
|
101 |
+
if generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
|
102 |
+
generated_seqs.append("".join(generated_seq))
|
103 |
+
if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
|
104 |
+
generated_seqs_FINAL.append("".join(generated_seq))
|
105 |
+
cls_pos_all.append(cls_pos)
|
106 |
+
cls_probability_all.append(cls_probability)
|
107 |
+
act_pos_all.append(act_pos)
|
108 |
+
act_probability_all.append(act_probability)
|
109 |
+
out = pd.DataFrame({'Generated_seq': generated_seqs_FINAL, 'Subtype': cls_pos_all, 'Subtype_probability': cls_probability_all, 'Potency': act_pos_all, 'Potency_probability': act_probability_all, 'random_seed': seed})
|
110 |
+
out.to_csv("output.csv", index=False)
|
111 |
+
count += 1
|
112 |
+
return 'output.csv'
|
113 |
+
|
114 |
+
iface = gr.Interface(
|
115 |
+
fn=CTXGen,
|
116 |
+
inputs=[
|
117 |
+
gr.Slider(minimum=1, maximum=2, step=0.01, label="τ"),
|
118 |
+
gr.Dropdown(choices=[1,10,100,1000], label="Number of generations"),
|
119 |
+
gr.Textbox(label="Min length"),
|
120 |
+
gr.Textbox(label="Max length")
|
121 |
+
],
|
122 |
+
outputs=["file"]
|
123 |
+
)
|
124 |
+
iface.launch()
|
bertmodel.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import copy, math
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
class Bert(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self, encoder, src_embed):
|
10 |
+
super(Bert, self).__init__()
|
11 |
+
|
12 |
+
self.encoder = encoder
|
13 |
+
self.src_embed = src_embed
|
14 |
+
|
15 |
+
def forward(self, src, src_mask):
|
16 |
+
|
17 |
+
return self.encoder(self.src_embed(src), src_mask)
|
18 |
+
|
19 |
+
|
20 |
+
class Encoder(nn.Module):
|
21 |
+
"Encoder是N个EncoderLayer的堆积而成"
|
22 |
+
def __init__(self, layer, N):
|
23 |
+
super(Encoder, self).__init__()
|
24 |
+
#layer是一个SubLayer,我们clone N个
|
25 |
+
self.layers = clones(layer, N)
|
26 |
+
#再加一个LayerNorm层
|
27 |
+
self.norm = LayerNorm(layer.size)
|
28 |
+
|
29 |
+
def forward(self, x, mask):
|
30 |
+
"把输入(x,mask)被逐层处理"
|
31 |
+
for layer in self.layers:
|
32 |
+
x = layer(x, mask)
|
33 |
+
return self.norm(x) #N个EncoderLayer处理完成之后还需要一个LayerNorm
|
34 |
+
|
35 |
+
class LayerNorm(nn.Module):
|
36 |
+
"构建一个layernorm模型"
|
37 |
+
def __init__(self, features, eps=1e-6):
|
38 |
+
super(LayerNorm, self).__init__()
|
39 |
+
self.a_2 = nn.Parameter(torch.ones(features))
|
40 |
+
self.b_2 = nn.Parameter(torch.zeros(features))
|
41 |
+
self.eps = eps
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
mean = x.mean(-1, keepdim=True)
|
45 |
+
std = x.std(-1, keepdim=True)
|
46 |
+
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
|
47 |
+
|
48 |
+
class SublayerConnection(nn.Module):
|
49 |
+
"""
|
50 |
+
LayerNorm + sublayer(Self-Attenion/Dense) + dropout + 残差连接
|
51 |
+
为了简单,把LayerNorm放到了前面,这和原始论文稍有不同,原始论文LayerNorm在最后
|
52 |
+
"""
|
53 |
+
def __init__(self, size, dropout):
|
54 |
+
super(SublayerConnection, self).__init__()
|
55 |
+
self.norm = LayerNorm(size)
|
56 |
+
self.dropout = nn.Dropout(dropout)
|
57 |
+
|
58 |
+
def forward(self, x, sublayer):
|
59 |
+
#将残差连接应用于具有相同大小的任何子层
|
60 |
+
return x + self.dropout(sublayer(self.norm(x)))
|
61 |
+
|
62 |
+
class EncoderLayer(nn.Module):
|
63 |
+
"Encoder由self-attn and feed forward构成"
|
64 |
+
def __init__(self, size, self_attn, feed_forward, dropout):
|
65 |
+
super(EncoderLayer, self).__init__()
|
66 |
+
self.self_attn = self_attn
|
67 |
+
self.feed_forward = feed_forward
|
68 |
+
self.sublayer = clones(SublayerConnection(size, dropout), 2)
|
69 |
+
self.size = size
|
70 |
+
|
71 |
+
def forward(self, x, mask):
|
72 |
+
"如上图所示"
|
73 |
+
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
|
74 |
+
return self.sublayer[1](x, self.feed_forward)
|
75 |
+
|
76 |
+
class PositionwiseFeedForward(nn.Module):
|
77 |
+
"Implements FFN equation."
|
78 |
+
def __init__(self, d_model, d_ff, dropout=0.1):
|
79 |
+
super(PositionwiseFeedForward, self).__init__()
|
80 |
+
self.w_1 = nn.Linear(d_model, d_ff)
|
81 |
+
self.w_2 = nn.Linear(d_ff, d_model)
|
82 |
+
self.dropout = nn.Dropout(dropout)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
return self.w_2(self.dropout(F.relu(self.w_1(x))))
|
86 |
+
|
87 |
+
def make_bert(src_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
|
88 |
+
"构建模型"
|
89 |
+
c = copy.deepcopy
|
90 |
+
attn = MultiHeadedAttention(h, d_model)
|
91 |
+
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
|
92 |
+
position = PositionalEncoding(d_model, dropout)
|
93 |
+
model = Bert(
|
94 |
+
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
|
95 |
+
|
96 |
+
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
|
97 |
+
)
|
98 |
+
|
99 |
+
# 随机初始化参数,这非常重要用Glorot/fan_avg.
|
100 |
+
for p in model.parameters():
|
101 |
+
if p.dim() > 1:
|
102 |
+
nn.init.xavier_uniform_(p)
|
103 |
+
return model
|
104 |
+
|
105 |
+
def make_bert_without_emb(d_model=128, N=2, d_ff=512, h=8, dropout=0.1):
|
106 |
+
c = copy.deepcopy
|
107 |
+
attn = MultiHeadedAttention(h, d_model)
|
108 |
+
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
|
109 |
+
trainable_encoder = Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N)
|
110 |
+
|
111 |
+
return trainable_encoder
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def clones(module, N):
|
116 |
+
"克隆N个完全相同的SubLayer,使用了copy.deepcopy"
|
117 |
+
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
|
118 |
+
|
119 |
+
def subsequent_mask(size):
|
120 |
+
"Mask out subsequent positions."
|
121 |
+
attn_shape = (1, size, size)
|
122 |
+
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
|
123 |
+
return torch.from_numpy(subsequent_mask) == 0
|
124 |
+
|
125 |
+
def attention(query, key, value, mask=None, dropout=None):
|
126 |
+
"计算 'Scaled Dot Product Attention'"
|
127 |
+
d_k = query.size(-1)
|
128 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
|
129 |
+
if mask is not None:
|
130 |
+
mask = mask.unsqueeze(-2)
|
131 |
+
scores = scores.masked_fill(mask == 0, -1e9)
|
132 |
+
p_attn = F.softmax(scores, dim = -1)
|
133 |
+
if dropout is not None:
|
134 |
+
p_attn = dropout(p_attn)
|
135 |
+
return torch.matmul(p_attn, value), p_attn
|
136 |
+
|
137 |
+
class MultiHeadedAttention(nn.Module):
|
138 |
+
def __init__(self, h, d_model, dropout=0.1):
|
139 |
+
"传入head个数及model的维度."
|
140 |
+
super(MultiHeadedAttention, self).__init__()
|
141 |
+
assert d_model % h == 0
|
142 |
+
# 这里假设d_v=d_k
|
143 |
+
self.d_k = d_model // h
|
144 |
+
self.h = h
|
145 |
+
self.linears = clones(nn.Linear(d_model, d_model), 4)
|
146 |
+
self.attn = None
|
147 |
+
self.dropout = nn.Dropout(p=dropout)
|
148 |
+
|
149 |
+
def forward(self, query, key, value, mask=None):
|
150 |
+
"Implements Figure 2"
|
151 |
+
if mask is not None:
|
152 |
+
# 相同的mask适应所有的head.
|
153 |
+
mask = mask.unsqueeze(1)
|
154 |
+
nbatches = query.size(0)
|
155 |
+
|
156 |
+
# 1) 首先使用线性变换,然后把d_model分配给h个Head,每个head为d_k=d_model/h
|
157 |
+
query, key, value = \
|
158 |
+
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
|
159 |
+
for l, x in zip(self.linears, (query, key, value))]
|
160 |
+
|
161 |
+
# 2) 使用attention函数计算scaled-Dot-product-attention
|
162 |
+
x, self.attn = attention(query, key, value, mask=mask,
|
163 |
+
dropout=self.dropout)
|
164 |
+
|
165 |
+
# 3) 实现Multi-head attention,用view函数把8个head的64维向量拼接成一个512的向量。
|
166 |
+
#然后再使用一个线性变换(512,521),shape不变.
|
167 |
+
x = x.transpose(1, 2).contiguous() \
|
168 |
+
.view(nbatches, -1, self.h * self.d_k)
|
169 |
+
return self.linears[-1](x)
|
170 |
+
|
171 |
+
class Embeddings(nn.Module):
|
172 |
+
def __init__(self, d_model, vocab):
|
173 |
+
super(Embeddings, self).__init__()
|
174 |
+
self.lut = nn.Embedding(vocab, d_model)
|
175 |
+
self.d_model = d_model
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
return self.lut(x) * math.sqrt(self.d_model)
|
179 |
+
|
180 |
+
class PositionalEncoding(nn.Module):
|
181 |
+
"实现PE函数"
|
182 |
+
def __init__(self, d_model, dropout, max_len=5000):
|
183 |
+
super(PositionalEncoding, self).__init__()
|
184 |
+
self.dropout = nn.Dropout(p=dropout)
|
185 |
+
|
186 |
+
# Compute the positional encodings once in log space.
|
187 |
+
pe = torch.zeros(max_len, d_model)
|
188 |
+
position = torch.arange(0, max_len).unsqueeze(1)
|
189 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) *
|
190 |
+
-(math.log(10000.0) / d_model))
|
191 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
192 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
193 |
+
pe = pe.unsqueeze(0)
|
194 |
+
self.register_buffer('pe', pe)
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
x = x + self.pe[:, :x.size(1)].clone().detach()
|
198 |
+
return self.dropout(x)
|
199 |
+
|
conoData_C5.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset_mlm.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from copy import deepcopy
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import TensorDataset, DataLoader
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
|
8 |
+
from vocab import PepVocab
|
9 |
+
from utils import mask, create_vocab
|
10 |
+
|
11 |
+
addtition_tokens = ['<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
|
12 |
+
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
|
13 |
+
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
|
14 |
+
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
|
15 |
+
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
|
16 |
+
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>','<high>','<low>']
|
17 |
+
|
18 |
+
def add_tokens_to_vocab(vocab_mlm: PepVocab):
|
19 |
+
vocab_mlm.add_special_token(addtition_tokens)
|
20 |
+
return vocab_mlm
|
21 |
+
|
22 |
+
def split_seq(seq, vocab, get_seq=False):
|
23 |
+
'''
|
24 |
+
note: the function is suitable for the sequences with the format of "label|label|sequence|msa1|msa2|msa3"
|
25 |
+
'''
|
26 |
+
start = '[CLS]'
|
27 |
+
end = '[SEP]'
|
28 |
+
pad = '[PAD]'
|
29 |
+
cls_label = seq.split('|')[0]
|
30 |
+
act_label = seq.split('|')[1]
|
31 |
+
|
32 |
+
if get_seq == True:
|
33 |
+
add = lambda x: [start] + [cls_label] + [act_label] + x + [end]
|
34 |
+
pep_seq = seq.split('|')[2]
|
35 |
+
# return [start] + [cls_label] + [act_label] + vocab.split_seq(pep_seq) + [end]
|
36 |
+
return add(vocab.split_seq(pep_seq))
|
37 |
+
|
38 |
+
else:
|
39 |
+
add = lambda x: [start] + [pad] + [pad] + x + [end]
|
40 |
+
msa1_seq = seq.split('|')[3]
|
41 |
+
msa2_seq = seq.split('|')[4]
|
42 |
+
msa3_seq = seq.split('|')[5]
|
43 |
+
|
44 |
+
# return [vocab.split_seq(msa1_seq)] + [vocab.split_seq(msa2_seq)] + [vocab.split_seq(msa3_seq)]
|
45 |
+
return [add(vocab.split_seq(msa1_seq))] + [add(vocab.split_seq(msa2_seq))] + [add(vocab.split_seq(msa3_seq))]
|
46 |
+
|
47 |
+
def get_paded_token_idx(vocab_mlm):
|
48 |
+
cono_path = '/home/ubuntu/work/gecheng/conoGen_final/FinalCono/new_cycle/conoData_C5.csv'
|
49 |
+
seq = pd.read_csv(cono_path)['Sequences']
|
50 |
+
|
51 |
+
splited_seq = list(seq.apply(split_seq, args=(vocab_mlm,True, )))
|
52 |
+
splited_msa = list(seq.apply(split_seq, args=(vocab_mlm, False, )))
|
53 |
+
|
54 |
+
vocab_mlm.set_get_attn(is_get=True)
|
55 |
+
padded_seq = vocab_mlm.truncate_pad(splited_seq, num_steps=54, padding_token='[PAD]')
|
56 |
+
attn_idx = vocab_mlm.get_attention_mask_mat()
|
57 |
+
|
58 |
+
vocab_mlm.set_get_attn(is_get=False)
|
59 |
+
padded_msa = vocab_mlm.truncate_pad(splited_msa, num_steps=54, padding_token='[PAD]')
|
60 |
+
|
61 |
+
idx_seq = vocab_mlm.__getitem__(padded_seq) # [b, 54] start, cls_label, act_label, sequence, end
|
62 |
+
|
63 |
+
idx_msa = vocab_mlm.__getitem__(padded_msa) # [b, 3, 50]
|
64 |
+
|
65 |
+
return padded_seq, idx_seq, idx_msa, attn_idx
|
66 |
+
|
67 |
+
def get_paded_token_idx_gen(vocab_mlm, seq):
|
68 |
+
|
69 |
+
splited_seq = split_seq(seq[0], vocab_mlm, True)
|
70 |
+
splited_msa = split_seq(seq[0], vocab_mlm, False)
|
71 |
+
|
72 |
+
vocab_mlm.set_get_attn(is_get=True)
|
73 |
+
padded_seq = vocab_mlm.truncate_pad(splited_seq, num_steps=54, padding_token='[PAD]')
|
74 |
+
attn_idx = vocab_mlm.get_attention_mask_mat()
|
75 |
+
|
76 |
+
vocab_mlm.set_get_attn(is_get=False)
|
77 |
+
padded_msa = vocab_mlm.truncate_pad(splited_msa, num_steps=54, padding_token='[PAD]')
|
78 |
+
|
79 |
+
idx_seq = vocab_mlm.__getitem__(padded_seq) # [b, 54] start, cls_label, act_label, sequence, end
|
80 |
+
|
81 |
+
idx_msa = vocab_mlm.__getitem__(padded_msa) # [b, 3, 50]
|
82 |
+
|
83 |
+
return padded_seq, idx_seq, idx_msa, attn_idx
|
84 |
+
|
85 |
+
|
86 |
+
def get_paded_token_idx_gen(vocab_mlm, seq, new_seq):
|
87 |
+
if new_seq == None:
|
88 |
+
splited_seq = split_seq(seq[0], vocab_mlm, True)
|
89 |
+
splited_msa = split_seq(seq[0], vocab_mlm, False)
|
90 |
+
|
91 |
+
vocab_mlm.set_get_attn(is_get=True)
|
92 |
+
padded_seq = vocab_mlm.truncate_pad(splited_seq, num_steps=54, padding_token='[PAD]')
|
93 |
+
attn_idx = vocab_mlm.get_attention_mask_mat()
|
94 |
+
vocab_mlm.set_get_attn(is_get=False)
|
95 |
+
|
96 |
+
padded_msa = vocab_mlm.truncate_pad(splited_msa, num_steps=54, padding_token='[PAD]')
|
97 |
+
|
98 |
+
idx_seq = vocab_mlm.__getitem__(padded_seq) # [b, 54] start, cls_label, act_label, sequence, end
|
99 |
+
idx_msa = vocab_mlm.__getitem__(padded_msa) # [b, 3, 50]
|
100 |
+
else:
|
101 |
+
splited_seq = split_seq(seq[0], vocab_mlm, True)
|
102 |
+
splited_msa = split_seq(seq[0], vocab_mlm, False)
|
103 |
+
vocab_mlm.set_get_attn(is_get=True)
|
104 |
+
padded_seq = vocab_mlm.truncate_pad(splited_seq, num_steps=54, padding_token='[PAD]')
|
105 |
+
attn_idx = vocab_mlm.get_attention_mask_mat()
|
106 |
+
vocab_mlm.set_get_attn(is_get=False)
|
107 |
+
padded_msa = vocab_mlm.truncate_pad(splited_msa, num_steps=54, padding_token='[PAD]')
|
108 |
+
idx_msa = vocab_mlm.__getitem__(padded_msa) # [b, 3, 50]
|
109 |
+
|
110 |
+
idx_seq = vocab_mlm.__getitem__(new_seq)
|
111 |
+
return padded_seq, idx_seq, idx_msa, attn_idx
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def make_mask(seq_ser, start, end, time, vocab_mlm, labels, idx_msa, attn_idx):
|
116 |
+
seq_ser = pd.Series(seq_ser)
|
117 |
+
masked_seq = seq_ser.apply(mask, args=(start, end, time))
|
118 |
+
masked_idx = vocab_mlm.__getitem__(list(masked_seq))
|
119 |
+
masked_idx = torch.tensor(masked_idx)
|
120 |
+
device = torch.device('cuda:1')
|
121 |
+
data_arrays = (masked_idx.to(device), labels.to(device), idx_msa.to(device), attn_idx.to(device))
|
122 |
+
dataset = TensorDataset(*data_arrays)
|
123 |
+
train_dataset, test_dataset = train_test_split(dataset, test_size=0.1, random_state=42, shuffle=True)
|
124 |
+
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
|
125 |
+
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=True)
|
126 |
+
|
127 |
+
return train_loader, test_loader
|
128 |
+
|
129 |
+
if __name__ == '__main__':
|
130 |
+
# from add_args import parse_args
|
131 |
+
import numpy as np
|
132 |
+
# args = parse_args()
|
133 |
+
|
134 |
+
vocab_mlm = create_vocab()
|
135 |
+
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
|
136 |
+
padded_seq, idx_seq, idx_msa, attn_idx = get_paded_token_idx(vocab_mlm)
|
137 |
+
labels = torch.tensor(idx_seq)
|
138 |
+
idx_msa = torch.tensor(idx_msa)
|
139 |
+
attn_idx = torch.tensor(attn_idx)
|
140 |
+
|
141 |
+
# time_step = args.mask_time_step
|
142 |
+
for t in np.arange(1, 50):
|
143 |
+
padded_seq_copy = deepcopy(padded_seq)
|
144 |
+
train_loader, test_loader = make_mask(padded_seq_copy, start=0, end=49, time=t,
|
145 |
+
vocab_mlm=vocab_mlm, labels=labels, idx_msa=idx_msa, attn_idx=attn_idx)
|
146 |
+
for i, (masked_idx, label, msa, attn) in enumerate(train_loader):
|
147 |
+
print(f"the {i}th batch is that masked_idx is {masked_idx.shape}, labels is {label.shape}, idx_msa is {msa.shape}")
|
148 |
+
print(f"the {t}th time step is done")
|
149 |
+
|
150 |
+
|
151 |
+
|
model.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import copy, math
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import AutoModelForMaskedLM, AutoConfig
|
7 |
+
|
8 |
+
from bertmodel import make_bert, make_bert_without_emb
|
9 |
+
from utils import ContraLoss
|
10 |
+
|
11 |
+
def load_pretrained_model():
|
12 |
+
# model_checkpoint = "/home/ubuntu/work/zq/conoMLM/prot_bert/prot_bert"
|
13 |
+
model_checkpoint = "/home/ubuntu/work/gecheng/conoGen_final/FinalCono/MLM/prot_bert_finetuned_model_mlm_best"
|
14 |
+
config = AutoConfig.from_pretrained(model_checkpoint)
|
15 |
+
model = AutoModelForMaskedLM.from_config(config)
|
16 |
+
|
17 |
+
return model
|
18 |
+
|
19 |
+
class ConoEncoder(nn.Module):
|
20 |
+
def __init__(self, encoder):
|
21 |
+
super(ConoEncoder, self).__init__()
|
22 |
+
|
23 |
+
self.encoder = encoder
|
24 |
+
self.trainable_encoder = make_bert_without_emb()
|
25 |
+
|
26 |
+
|
27 |
+
for param in self.encoder.parameters():
|
28 |
+
param.requires_grad = False
|
29 |
+
|
30 |
+
|
31 |
+
def forward(self, x, mask): # x:(128,54) mask:(128,54)
|
32 |
+
feat = self.encoder(x, attention_mask=mask) # (128,54,128)
|
33 |
+
feat = list(feat.values())[0] # (128,54,128)
|
34 |
+
|
35 |
+
feat = self.trainable_encoder(feat, mask) # (128,54,128)
|
36 |
+
|
37 |
+
return feat
|
38 |
+
|
39 |
+
class MSABlock(nn.Module):
|
40 |
+
def __init__(self, in_dim, out_dim, vocab_size):
|
41 |
+
super(MSABlock, self).__init__()
|
42 |
+
self.embedding = nn.Embedding(vocab_size, in_dim)
|
43 |
+
self.mlp = nn.Sequential(
|
44 |
+
nn.Linear(in_dim, out_dim),
|
45 |
+
nn.LeakyReLU(),
|
46 |
+
nn.Linear(out_dim, out_dim)
|
47 |
+
)
|
48 |
+
self.init()
|
49 |
+
|
50 |
+
def init(self):
|
51 |
+
for layer in self.mlp.children():
|
52 |
+
if isinstance(layer, nn.Linear):
|
53 |
+
nn.init.xavier_uniform_(layer.weight)
|
54 |
+
# nn.init.xavier_uniform_(self.embedding.weight)
|
55 |
+
|
56 |
+
def forward(self, x): # x: (128,3,54)
|
57 |
+
x = self.embedding(x) # x: (128,3,54,128)
|
58 |
+
x = self.mlp(x) # x: (128,3,54,128)
|
59 |
+
return x
|
60 |
+
|
61 |
+
class ConoModel(nn.Module):
|
62 |
+
def __init__(self, encoder, msa_block, decoder):
|
63 |
+
super(ConoModel, self).__init__()
|
64 |
+
self.encoder = encoder
|
65 |
+
self.msa_block = msa_block
|
66 |
+
self.feature_combine = nn.Conv2d(in_channels=4, out_channels=1, kernel_size=1)
|
67 |
+
self.decoder = decoder
|
68 |
+
|
69 |
+
def forward(self, input_ids, msa, attn_idx=None):
|
70 |
+
# 仅使用 input_ids 作为输入,获取编码器输出
|
71 |
+
encoder_output = self.encoder.forward(input_ids, attn_idx) # (128,54,128)
|
72 |
+
msa_output = self.msa_block(msa) # (128,3,54,128)
|
73 |
+
# msa_output = torch.mean(msa_output, dim=1)
|
74 |
+
encoder_output = encoder_output.view(input_ids.shape[0], 54, -1).unsqueeze(1) # (128,1,54,128)
|
75 |
+
|
76 |
+
output = torch.cat([encoder_output*5, msa_output], dim=1) # (128,4,54,128)
|
77 |
+
output = self.feature_combine(output) # (128,1,54,128)
|
78 |
+
output = output.squeeze(1) # (128,54,128)
|
79 |
+
# 解码器对编码器的输出进行解码
|
80 |
+
logits = self.decoder(output) # (128,54,85)
|
81 |
+
|
82 |
+
return logits
|
83 |
+
|
84 |
+
class ContraModel(nn.Module):
|
85 |
+
def __init__(self, cono_encoder):
|
86 |
+
super(ContraModel, self).__init__()
|
87 |
+
|
88 |
+
self.contra_loss = ContraLoss()
|
89 |
+
|
90 |
+
self.encoder1 = cono_encoder
|
91 |
+
self.encoder2 = make_bert(404, 6, 128)
|
92 |
+
|
93 |
+
# contrastive decoder
|
94 |
+
self.lstm = nn.LSTM(16, 16, batch_first=True)
|
95 |
+
self.contra_decoder = nn.Sequential(
|
96 |
+
nn.Linear(128, 64),
|
97 |
+
nn.LeakyReLU(),
|
98 |
+
nn.Linear(64, 32),
|
99 |
+
nn.LeakyReLU(),
|
100 |
+
nn.Linear(32, 16),
|
101 |
+
nn.LeakyReLU(),
|
102 |
+
nn.Dropout(0.1),
|
103 |
+
)
|
104 |
+
|
105 |
+
# classifier
|
106 |
+
self.pre_classifer = nn.LSTM(128, 64, batch_first=True)
|
107 |
+
self.classifer = nn.Sequential(
|
108 |
+
nn.Linear(128, 32),
|
109 |
+
nn.LeakyReLU(),
|
110 |
+
nn.Linear(32, 6),
|
111 |
+
nn.Softmax(dim=-1)
|
112 |
+
)
|
113 |
+
|
114 |
+
self.init()
|
115 |
+
|
116 |
+
def init(self):
|
117 |
+
|
118 |
+
for layer in self.contra_decoder.children():
|
119 |
+
if isinstance(layer, nn.Linear):
|
120 |
+
nn.init.xavier_uniform_(layer.weight)
|
121 |
+
for layer in self.classifer.children():
|
122 |
+
if isinstance(layer, nn.Linear):
|
123 |
+
nn.init.xavier_uniform_(layer.weight)
|
124 |
+
for layer in self.pre_classifer.children():
|
125 |
+
if isinstance(layer, nn.Linear):
|
126 |
+
nn.init.xavier_uniform_(layer.weight)
|
127 |
+
for layer in self.lstm.children():
|
128 |
+
if isinstance(layer, nn.Linear):
|
129 |
+
nn.init.xavier_uniform_(layer.weight)
|
130 |
+
|
131 |
+
def compute_class_loss(self, feat1, feat2, labels):
|
132 |
+
_, cls_feat1= self.pre_classifer(feat1)
|
133 |
+
_, cls_feat2 = self.pre_classifer(feat2)
|
134 |
+
cls_feat1 = torch.cat([cls_feat1[0], cls_feat1[1]], dim=-1).squeeze(0)
|
135 |
+
cls_feat2 = torch.cat([cls_feat2[0], cls_feat2[1]], dim=-1).squeeze(0)
|
136 |
+
|
137 |
+
cls1_dis = self.classifer(cls_feat1)
|
138 |
+
cls2_dis = self.classifer(cls_feat2)
|
139 |
+
cls1_loss = F.cross_entropy(cls1_dis, labels.to('cuda:0'))
|
140 |
+
cls2_loss = F.cross_entropy(cls2_dis, labels.to('cuda:0'))
|
141 |
+
|
142 |
+
return cls1_loss, cls2_loss
|
143 |
+
|
144 |
+
def compute_contrastive_loss(self, feat1, feat2):
|
145 |
+
|
146 |
+
contra_feat1 = self.contra_decoder(feat1)
|
147 |
+
contra_feat2 = self.contra_decoder(feat2)
|
148 |
+
|
149 |
+
_, feat1 = self.lstm(contra_feat1)
|
150 |
+
_, feat2 = self.lstm(contra_feat2)
|
151 |
+
feat1 = torch.cat([feat1[0], feat1[1]], dim=-1).squeeze(0)
|
152 |
+
feat2 = torch.cat([feat2[0], feat2[1]], dim=-1).squeeze(0)
|
153 |
+
|
154 |
+
ctr_loss = self.contra_loss(feat1, feat2)
|
155 |
+
|
156 |
+
return ctr_loss
|
157 |
+
|
158 |
+
def forward(self, x1, x2, labels=None):
|
159 |
+
loss = dict()
|
160 |
+
|
161 |
+
idx1, attn1 = x1
|
162 |
+
idx2, attn2 = x2
|
163 |
+
feat1 = self.encoder1(idx1.to('cuda:0'), attn1.to('cuda:0'))
|
164 |
+
feat2 = self.encoder2(idx2.to('cuda:0'), attn2.to('cuda:0'))
|
165 |
+
|
166 |
+
cls1_loss, cls2_loss = self.compute_class_loss(feat1, feat2, labels)
|
167 |
+
|
168 |
+
ctr_loss = self.compute_contrastive_loss(feat1, feat2)
|
169 |
+
|
170 |
+
loss['cls1_loss'] = cls1_loss
|
171 |
+
loss['cls2_loss'] = cls2_loss
|
172 |
+
loss['ctr_loss'] = ctr_loss
|
173 |
+
|
174 |
+
return loss
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
pandas
|
utils.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import copy, math
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from vocab import PepVocab
|
8 |
+
|
9 |
+
def create_vocab():
|
10 |
+
vocab_mlm = PepVocab()
|
11 |
+
vocab_mlm.vocab_from_txt('/home/ubuntu/work/gecheng/conoGen_final/vocab.txt')
|
12 |
+
# vocab_mlm.token_to_idx['-'] = 23
|
13 |
+
return vocab_mlm
|
14 |
+
|
15 |
+
def show_parameters(model: nn.Module, show_all=False, show_trainable=True):
|
16 |
+
|
17 |
+
mlp_pa = {name:param.requires_grad for name, param in model.named_parameters()}
|
18 |
+
|
19 |
+
if show_all:
|
20 |
+
print('All parameters:')
|
21 |
+
print(mlp_pa)
|
22 |
+
|
23 |
+
if show_trainable:
|
24 |
+
print('Trainable parameters:')
|
25 |
+
print(list(filter(lambda x: x[1], list(mlp_pa.items()))))
|
26 |
+
|
27 |
+
class ContraLoss(nn.Module):
|
28 |
+
def __init__(self, *args, **kwargs) -> None:
|
29 |
+
super(ContraLoss, self).__init__(*args, **kwargs)
|
30 |
+
|
31 |
+
self.temp = 0.07
|
32 |
+
|
33 |
+
def contrastive_loss(self, proj1, proj2):
|
34 |
+
proj1 = F.normalize(proj1, dim=1)
|
35 |
+
proj2 = F.normalize(proj2, dim=1)
|
36 |
+
dot = torch.matmul(proj1, proj2.T) / self.temp
|
37 |
+
dot_max, _ = torch.max(dot, dim=1, keepdim=True)
|
38 |
+
dot = dot - dot_max.detach()
|
39 |
+
|
40 |
+
exp_dot = torch.exp(dot)
|
41 |
+
log_prob = torch.diag(dot, 0) - torch.log(exp_dot.sum(1))
|
42 |
+
cont_loss = -log_prob.mean()
|
43 |
+
return cont_loss
|
44 |
+
|
45 |
+
def forward(self, x, y, label=None):
|
46 |
+
return self.contrastive_loss(x, y)
|
47 |
+
|
48 |
+
|
49 |
+
import numpy as np
|
50 |
+
from tqdm import tqdm
|
51 |
+
import torch
|
52 |
+
import torch.nn as nn
|
53 |
+
import random
|
54 |
+
from transformers import set_seed
|
55 |
+
|
56 |
+
def show_parameters(model: nn.Module, show_all=False, show_trainable=True):
|
57 |
+
|
58 |
+
mlp_pa = {name:param.requires_grad for name, param in model.named_parameters()}
|
59 |
+
|
60 |
+
if show_all:
|
61 |
+
print('All parameters:')
|
62 |
+
print(mlp_pa)
|
63 |
+
|
64 |
+
if show_trainable:
|
65 |
+
print('Trainable parameters:')
|
66 |
+
print(list(filter(lambda x: x[1], list(mlp_pa.items()))))
|
67 |
+
|
68 |
+
def extract_args(text):
|
69 |
+
str_list = []
|
70 |
+
substr = ""
|
71 |
+
for s in text:
|
72 |
+
if s in ('(', ')', '=', ',', ' ', '\n', "'"):
|
73 |
+
if substr != '':
|
74 |
+
str_list.append(substr)
|
75 |
+
substr = ''
|
76 |
+
else:
|
77 |
+
substr += s
|
78 |
+
|
79 |
+
def eval_one_epoch(loader, cono_encoder):
|
80 |
+
cono_encoder.eval()
|
81 |
+
batch_loss = []
|
82 |
+
for i, data in enumerate(tqdm(loader)):
|
83 |
+
|
84 |
+
loss = cono_encoder.contra_forward(data)
|
85 |
+
batch_loss.append(loss.item())
|
86 |
+
print(f'[INFO] Test batch {i} loss: {loss.item()}')
|
87 |
+
|
88 |
+
total_loss = np.mean(batch_loss)
|
89 |
+
print(f'[INFO] Total loss: {total_loss}')
|
90 |
+
return total_loss
|
91 |
+
|
92 |
+
def setup_seed(seed):
|
93 |
+
torch.manual_seed(seed)
|
94 |
+
torch.cuda.manual_seed_all(seed)
|
95 |
+
np.random.seed(seed)
|
96 |
+
random.seed(seed)
|
97 |
+
torch.backends.cudnn.deterministic = True
|
98 |
+
set_seed(seed)
|
99 |
+
|
100 |
+
class CrossEntropyLossWithMask(torch.nn.Module):
|
101 |
+
def __init__(self, weight=None):
|
102 |
+
super(CrossEntropyLossWithMask, self).__init__()
|
103 |
+
self.criterion = nn.CrossEntropyLoss(reduction='none')
|
104 |
+
|
105 |
+
def forward(self, y_pred, y_true, mask):
|
106 |
+
(pos_mask, label_mask, seq_mask) = mask
|
107 |
+
loss = self.criterion(y_pred, y_true) # (6912)
|
108 |
+
|
109 |
+
pos_loss = (loss * pos_mask).sum() / torch.sum(pos_mask)
|
110 |
+
label_loss = (loss * label_mask).sum() / torch.sum(label_mask)
|
111 |
+
seq_loss = (loss * seq_mask).sum() / torch.sum(seq_mask)
|
112 |
+
|
113 |
+
loss = pos_loss + label_loss/2 + seq_loss/3
|
114 |
+
|
115 |
+
return loss
|
116 |
+
|
117 |
+
|
118 |
+
def mask(x, start, end, time):
|
119 |
+
ske_pos = np.where(np.array(x)=='C')[0] - start
|
120 |
+
lables_pos = np.array([1, 2]) - start
|
121 |
+
ske_pos = list(filter(lambda x: end-start >= x >= 0, ske_pos))
|
122 |
+
lables_pos = list(filter(lambda x: x >= 0, lables_pos))
|
123 |
+
weight = np.ones(end - start+1)
|
124 |
+
rand = np.random.rand()
|
125 |
+
if rand < 0.5:
|
126 |
+
weight[lables_pos] = 100000
|
127 |
+
else:
|
128 |
+
weight[lables_pos] = 1
|
129 |
+
mask_pos = np.random.choice(range(start, end+1), time, p=weight/np.sum(weight), replace=False)
|
130 |
+
for idx in mask_pos:
|
131 |
+
x[idx] = '[MASK]'
|
132 |
+
return x
|
vocab.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
class PepVocab:
|
5 |
+
def __init__(self):
|
6 |
+
self.token_to_idx = {
|
7 |
+
'<MASK>': -1, '<PAD>': 0, 'A': 1, 'C': 2, 'E': 3, 'D': 4, 'F': 5, 'I': 6, 'H': 7,
|
8 |
+
'K': 8, 'M': 9, 'L': 10, 'N': 11, 'Q': 12, 'P': 13, 'S': 14,
|
9 |
+
'R': 15, 'T': 16, 'W': 17, 'V': 18, 'Y': 19, 'G': 20, 'O': 21, 'U': 22, 'Z': 23, 'X': 24}
|
10 |
+
self.idx_to_token = {
|
11 |
+
-1: '<MASK>', 0: '<PAD>', 1: 'A', 2: 'C', 3: 'E', 4: 'D', 5: 'F', 6: 'I', 7: 'H',
|
12 |
+
8: 'K', 9: 'M', 10: 'L', 11: 'N', 12: 'Q', 13: 'P', 14: 'S',
|
13 |
+
15: 'R', 16: 'T', 17: 'W', 18: 'V', 19: 'Y', 20: 'G', 21: 'O', 22: 'U', 23: 'Z', 24: 'X'}
|
14 |
+
|
15 |
+
self.get_attention_mask = False
|
16 |
+
self.attention_mask = []
|
17 |
+
|
18 |
+
def set_get_attn(self, is_get: bool):
|
19 |
+
self.get_attention_mask = is_get
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.idx_to_token)
|
23 |
+
|
24 |
+
def __getitem__(self, tokens):
|
25 |
+
'''
|
26 |
+
note: input should a splited sequence
|
27 |
+
|
28 |
+
Args:
|
29 |
+
tokens: a token or token list of splited
|
30 |
+
'''
|
31 |
+
if not isinstance(tokens, (list, tuple)):
|
32 |
+
# return self.token_to_idx.get(tokens)
|
33 |
+
return self.token_to_idx[tokens]
|
34 |
+
return [self.__getitem__(token) for token in tokens]
|
35 |
+
|
36 |
+
def vocab_from_txt(self, path):
|
37 |
+
'''
|
38 |
+
note: this function use for constructing vocab mapping
|
39 |
+
but it is only suitable for special txt format
|
40 |
+
it support one column txt file, which column name is 0
|
41 |
+
'''
|
42 |
+
token_to_idx = {}
|
43 |
+
idx_to_token = {}
|
44 |
+
chr_idx = pd.read_csv(path, header=None, sep='\t')
|
45 |
+
if chr_idx.shape[1] == 1:
|
46 |
+
for idx, token in enumerate(chr_idx[0]):
|
47 |
+
token_to_idx[token] = idx
|
48 |
+
idx_to_token[idx] = token
|
49 |
+
self.token_to_idx = token_to_idx
|
50 |
+
self.idx_to_token = idx_to_token
|
51 |
+
|
52 |
+
def to_tokens(self, indices):
|
53 |
+
'''
|
54 |
+
note: input should a integer list
|
55 |
+
'''
|
56 |
+
if hasattr(indices, '__len__') and len(indices) > 1:
|
57 |
+
return [self.idx_to_token[int(index)] for index in indices]
|
58 |
+
return self.idx_to_token[indices]
|
59 |
+
|
60 |
+
def add_special_token(self, token: str|list|tuple) -> None:
|
61 |
+
if not isinstance(token, (list, tuple)):
|
62 |
+
if token in self.token_to_idx:
|
63 |
+
raise ValueError(f"token {token} already in the vocab")
|
64 |
+
self.idx_to_token[len(self.idx_to_token)] = token
|
65 |
+
self.token_to_idx[token] = len(self.token_to_idx)
|
66 |
+
else:
|
67 |
+
[self.add_special_token(t) for t in token]
|
68 |
+
|
69 |
+
def split_seq(self, seq: str|list|tuple) -> list:
|
70 |
+
if not isinstance(seq, (list, tuple)):
|
71 |
+
return re.findall(r"<[a-zA-Z0-9]+>|[a-zA-Z-]", seq)
|
72 |
+
return [self.split_seq(s) for s in seq] # a list of list
|
73 |
+
|
74 |
+
def truncate_pad(self, line, num_steps, padding_token='<PAD>') -> list:
|
75 |
+
|
76 |
+
if not isinstance(line[0], list):
|
77 |
+
if len(line) > num_steps:
|
78 |
+
if self.get_attention_mask:
|
79 |
+
self.attention_mask.append([1]*num_steps)
|
80 |
+
return line[:num_steps]
|
81 |
+
if self.get_attention_mask:
|
82 |
+
self.attention_mask.append([1] * len(line) + [0] * (num_steps - len(line)))
|
83 |
+
return line + [padding_token] * (num_steps - len(line))
|
84 |
+
else:
|
85 |
+
return [self.truncate_pad(l, num_steps, padding_token) for l in line] # a list of list
|
86 |
+
|
87 |
+
def get_attention_mask_mat(self):
|
88 |
+
attention_mask = self.attention_mask
|
89 |
+
self.attention_mask = []
|
90 |
+
return attention_mask
|
91 |
+
|
92 |
+
def seq_to_idx(self, seq: str|list|tuple, num_steps: int, padding_token='<PAD>') -> list:
|
93 |
+
'''
|
94 |
+
note: ensure to execut this function after add_special_token
|
95 |
+
'''
|
96 |
+
|
97 |
+
splited_seq = self.split_seq(seq)
|
98 |
+
# **********************
|
99 |
+
# after split, we need to mask sequence
|
100 |
+
# note:
|
101 |
+
# 1. mask tokens by probability
|
102 |
+
# 2. return a list or list of list
|
103 |
+
# **********************
|
104 |
+
padded_seq = self.truncate_pad(splited_seq, num_steps, padding_token)
|
105 |
+
|
106 |
+
return self.__getitem__(padded_seq)
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
class MutilVocab:
|
111 |
+
def __init__(self, data, AA_tok_len=2):
|
112 |
+
"""
|
113 |
+
Args:
|
114 |
+
data (_type_):
|
115 |
+
AA_tok_len (int, optional): Defaults to 1.
|
116 |
+
start_token (bool, optional): True is required for encoder-based model.
|
117 |
+
"""
|
118 |
+
## Load train dataset
|
119 |
+
self.x_data = data
|
120 |
+
self.tok_AA_len = AA_tok_len
|
121 |
+
self.default_AA = list("RHKDESTNQCGPAVILMFYW")
|
122 |
+
# AAs which are not included in default_AA
|
123 |
+
self.tokens = self._token_gen(self.tok_AA_len)
|
124 |
+
|
125 |
+
self.token_to_idx = {k: i + 4 for i, k in enumerate(self.tokens)}
|
126 |
+
self.token_to_idx["[PAD]"] = 0 ## idx as 0 is PAD
|
127 |
+
self.token_to_idx["[CLS]"] = 1 ## idx as 1 is CLS
|
128 |
+
self.token_to_idx["[SEP]"] = 2 ## idx as 2 is SEP
|
129 |
+
self.token_to_idx["[MASK]"] = 3 ## idx as 3 is MASK
|
130 |
+
|
131 |
+
def split_seq(self):
|
132 |
+
self.X = [self._seq_to_tok(seq) for seq in self.x_data]
|
133 |
+
return self.X
|
134 |
+
|
135 |
+
def tok_idx(self, seqs):
|
136 |
+
'''
|
137 |
+
note: ensure to execut this function before truancate_pad
|
138 |
+
'''
|
139 |
+
|
140 |
+
seqs_idx = []
|
141 |
+
for seq in seqs:
|
142 |
+
seq_idx = []
|
143 |
+
for s in seq:
|
144 |
+
seq_idx.append(self.token_to_idx[s])
|
145 |
+
seqs_idx.append(seq_idx)
|
146 |
+
|
147 |
+
return seqs_idx
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
def _token_gen(self, tok_AA_len: int, st: str = "", curr_depth: int = 0):
|
152 |
+
"""Generate tokens based on default amino acid residues
|
153 |
+
and also includes "X" as arbitrary residues.
|
154 |
+
Length of AAs in each token should be provided by "tok_AA_len"
|
155 |
+
|
156 |
+
Args:
|
157 |
+
tok_AA_len (int): Length of token
|
158 |
+
st (str, optional): Defaults to ''.
|
159 |
+
curr_depth (int, optional): Defaults to 0.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
List: List of tokens
|
163 |
+
"""
|
164 |
+
curr_depth += 1
|
165 |
+
if curr_depth <= tok_AA_len:
|
166 |
+
l = [
|
167 |
+
st + t
|
168 |
+
for s in self.default_AA
|
169 |
+
for t in self._token_gen(tok_AA_len, s, curr_depth)
|
170 |
+
]
|
171 |
+
return l
|
172 |
+
else:
|
173 |
+
return [st]
|
174 |
+
|
175 |
+
def _seq_to_tok(self, seq: str):
|
176 |
+
"""Convert each token to index
|
177 |
+
|
178 |
+
Args:
|
179 |
+
seq (str): AA sequence
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
list: A list of indexes
|
183 |
+
"""
|
184 |
+
|
185 |
+
seq_idx = []
|
186 |
+
|
187 |
+
seq_idx += ["[CLS]"]
|
188 |
+
|
189 |
+
for i in range(len(seq) - self.tok_AA_len + 1):
|
190 |
+
curr_token = seq[i : i + self.tok_AA_len]
|
191 |
+
seq_idx.append(curr_token)
|
192 |
+
seq_idx += ['[SEP]']
|
193 |
+
return seq_idx
|
vocab.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[PAD]
|
2 |
+
[UNK]
|
3 |
+
[CLS]
|
4 |
+
[SEP]
|
5 |
+
[MASK]
|
6 |
+
L
|
7 |
+
A
|
8 |
+
G
|
9 |
+
V
|
10 |
+
E
|
11 |
+
S
|
12 |
+
I
|
13 |
+
K
|
14 |
+
R
|
15 |
+
D
|
16 |
+
T
|
17 |
+
P
|
18 |
+
N
|
19 |
+
Q
|
20 |
+
F
|
21 |
+
Y
|
22 |
+
M
|
23 |
+
H
|
24 |
+
C
|
25 |
+
W
|
26 |
+
X
|
27 |
+
U
|
28 |
+
B
|
29 |
+
Z
|
30 |
+
O
|