oucgc1996's picture
Upload 5 files
e13ac09 verified
import re
import pandas as pd
class PepVocab:
def __init__(self):
self.token_to_idx = {
'<MASK>': -1, '<PAD>': 0, 'A': 1, 'C': 2, 'E': 3, 'D': 4, 'F': 5, 'I': 6, 'H': 7,
'K': 8, 'M': 9, 'L': 10, 'N': 11, 'Q': 12, 'P': 13, 'S': 14,
'R': 15, 'T': 16, 'W': 17, 'V': 18, 'Y': 19, 'G': 20, 'O': 21, 'U': 22, 'Z': 23, 'X': 24}
self.idx_to_token = {
-1: '<MASK>', 0: '<PAD>', 1: 'A', 2: 'C', 3: 'E', 4: 'D', 5: 'F', 6: 'I', 7: 'H',
8: 'K', 9: 'M', 10: 'L', 11: 'N', 12: 'Q', 13: 'P', 14: 'S',
15: 'R', 16: 'T', 17: 'W', 18: 'V', 19: 'Y', 20: 'G', 21: 'O', 22: 'U', 23: 'Z', 24: 'X'}
self.get_attention_mask = False
self.attention_mask = []
def set_get_attn(self, is_get: bool):
self.get_attention_mask = is_get
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
'''
note: input should a splited sequence
Args:
tokens: a token or token list of splited
'''
if not isinstance(tokens, (list, tuple)):
# return self.token_to_idx.get(tokens)
return self.token_to_idx[tokens]
return [self.__getitem__(token) for token in tokens]
def vocab_from_txt(self, path):
'''
note: this function use for constructing vocab mapping
but it is only suitable for special txt format
it support one column txt file, which column name is 0
'''
token_to_idx = {}
idx_to_token = {}
chr_idx = pd.read_csv(path, header=None, sep='\t')
if chr_idx.shape[1] == 1:
for idx, token in enumerate(chr_idx[0]):
token_to_idx[token] = idx
idx_to_token[idx] = token
self.token_to_idx = token_to_idx
self.idx_to_token = idx_to_token
def to_tokens(self, indices):
'''
note: input should a integer list
'''
if hasattr(indices, '__len__') and len(indices) > 1:
return [self.idx_to_token[int(index)] for index in indices]
return self.idx_to_token[indices]
def add_special_token(self, token: str|list|tuple) -> None:
if not isinstance(token, (list, tuple)):
if token in self.token_to_idx:
raise ValueError(f"token {token} already in the vocab")
self.idx_to_token[len(self.idx_to_token)] = token
self.token_to_idx[token] = len(self.token_to_idx)
else:
[self.add_special_token(t) for t in token]
def split_seq(self, seq: str|list|tuple) -> list:
if not isinstance(seq, (list, tuple)):
return re.findall(r"<[a-zA-Z0-9]+>|[a-zA-Z-]", seq)
return [self.split_seq(s) for s in seq] # a list of list
def truncate_pad(self, line, num_steps, padding_token='<PAD>') -> list:
if not isinstance(line[0], list):
if len(line) > num_steps:
if self.get_attention_mask:
self.attention_mask.append([1]*num_steps)
return line[:num_steps]
if self.get_attention_mask:
self.attention_mask.append([1] * len(line) + [0] * (num_steps - len(line)))
return line + [padding_token] * (num_steps - len(line))
else:
return [self.truncate_pad(l, num_steps, padding_token) for l in line] # a list of list
def get_attention_mask_mat(self):
attention_mask = self.attention_mask
self.attention_mask = []
return attention_mask
def seq_to_idx(self, seq: str|list|tuple, num_steps: int, padding_token='<PAD>') -> list:
'''
note: ensure to execut this function after add_special_token
'''
splited_seq = self.split_seq(seq)
# **********************
# after split, we need to mask sequence
# note:
# 1. mask tokens by probability
# 2. return a list or list of list
# **********************
padded_seq = self.truncate_pad(splited_seq, num_steps, padding_token)
return self.__getitem__(padded_seq)
class MutilVocab:
def __init__(self, data, AA_tok_len=2):
"""
Args:
data (_type_):
AA_tok_len (int, optional): Defaults to 1.
start_token (bool, optional): True is required for encoder-based model.
"""
## Load train dataset
self.x_data = data
self.tok_AA_len = AA_tok_len
self.default_AA = list("RHKDESTNQCGPAVILMFYW")
# AAs which are not included in default_AA
self.tokens = self._token_gen(self.tok_AA_len)
self.token_to_idx = {k: i + 4 for i, k in enumerate(self.tokens)}
self.token_to_idx["[PAD]"] = 0 ## idx as 0 is PAD
self.token_to_idx["[CLS]"] = 1 ## idx as 1 is CLS
self.token_to_idx["[SEP]"] = 2 ## idx as 2 is SEP
self.token_to_idx["[MASK]"] = 3 ## idx as 3 is MASK
def split_seq(self):
self.X = [self._seq_to_tok(seq) for seq in self.x_data]
return self.X
def tok_idx(self, seqs):
'''
note: ensure to execut this function before truancate_pad
'''
seqs_idx = []
for seq in seqs:
seq_idx = []
for s in seq:
seq_idx.append(self.token_to_idx[s])
seqs_idx.append(seq_idx)
return seqs_idx
def _token_gen(self, tok_AA_len: int, st: str = "", curr_depth: int = 0):
"""Generate tokens based on default amino acid residues
and also includes "X" as arbitrary residues.
Length of AAs in each token should be provided by "tok_AA_len"
Args:
tok_AA_len (int): Length of token
st (str, optional): Defaults to ''.
curr_depth (int, optional): Defaults to 0.
Returns:
List: List of tokens
"""
curr_depth += 1
if curr_depth <= tok_AA_len:
l = [
st + t
for s in self.default_AA
for t in self._token_gen(tok_AA_len, s, curr_depth)
]
return l
else:
return [st]
def _seq_to_tok(self, seq: str):
"""Convert each token to index
Args:
seq (str): AA sequence
Returns:
list: A list of indexes
"""
seq_idx = []
seq_idx += ["[CLS]"]
for i in range(len(seq) - self.tok_AA_len + 1):
curr_token = seq[i : i + self.tok_AA_len]
seq_idx.append(curr_token)
seq_idx += ['[SEP]']
return seq_idx