File size: 8,517 Bytes
6ecb800 e946f65 6ecb800 e946f65 6ecb800 e946f65 39d3f04 e946f65 fdecd8f f3acc3b 5cb1127 2452cd6 bbb5726 2452cd6 e946f65 2452cd6 d28f5ed 2452cd6 f3acc3b fdecd8f 0d11814 e946f65 0bfbdcc d28f5ed e946f65 2452cd6 e946f65 2452cd6 fdecd8f 0d11814 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 e946f65 2452cd6 ca5630e 2452cd6 bbb5726 b883e7a bbb5726 b883e7a 9a2664b 2452cd6 0d11814 2452cd6 c34757d 430f01f 3109018 f5c4387 adf7ae1 ca5630e adf7ae1 ca5630e adf7ae1 ca5630e c34757d fdecd8f f3acc3b 39d3f04 c34757d b883e7a 0d11814 39d3f04 f138db5 e946f65 c34757d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import random
import torch
import gradio as gr
from gradio_rangeslider import RangeSlider
import pandas as pd
from utils import create_vocab, setup_seed
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
import time
is_stopped = False
def temperature_sampling(logits, temperature):
logits = logits / temperature
probabilities = torch.softmax(logits, dim=-1)
sampled_token = torch.multinomial(probabilities, 1)
return sampled_token
def stop_generation():
global is_stopped
is_stopped = True
return "Generation stopped."
def CTXGen(τ, g_num, length_range, model_name, seed):
if seed =='random':
seed = random.randint(0,100000)
setup_seed(seed)
else:
setup_seed(int(seed))
global is_stopped
is_stopped = False
device = torch.device("cpu")
vocab_mlm = create_vocab()
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
save_path = model_name
train_seqs = pd.read_csv('C0_seq.csv')
train_seq = train_seqs['Seq'].tolist()
model = torch.load(save_path, map_location=torch.device('cpu'))
model = model.to(device)
start, end = length_range
X1 = "X"
X2 = "X"
X4 = ""
X5 = ""
X6 = ""
model.eval()
with torch.no_grad():
IDs = []
generated_seqs = []
generated_seqs_FINAL = []
cls_pos_all = []
cls_probability_all = []
act_pos_all = []
act_probability_all = []
count = 0
gen_num = int(g_num)
NON_AA = ["B", "O", "U", "Z", "X", '<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>', '<α6β4>', '<α2β4>',
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
'<α9α10>', '<α6α3β4>', '<NaTTXS>', '<Na17>', '<high>', '<low>', '[UNK]', '[SEP]', '[PAD]', '[CLS]', '[MASK]']
start_time = time.time()
while count < gen_num:
new_seq = None
if is_stopped:
return "output.csv", pd.DataFrame()
if time.time() - start_time > 1200:
break
gen_len = random.randint(int(start), int(end))
X3 = "X" * gen_len
seq = [f"{X1}|{X2}|{X3}|{X4}|{X5}|{X6}"]
vocab_mlm.token_to_idx["X"] = 4
padded_seq, _, _, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
input_text = ["[MASK]" if i == "X" else i for i in padded_seq]
gen_length = len(input_text)
length = gen_length - sum(1 for x in input_text if x != '[MASK]')
for i in range(length):
if is_stopped:
return "output.csv", pd.DataFrame()
_, idx_seq, idx_msa, attn_idx = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
idx_seq = torch.tensor(idx_seq).unsqueeze(0).to(device)
idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
attn_idx = torch.tensor(attn_idx).to(device)
mask_positions = [j for j in range(gen_length) if input_text[j] == "[MASK]"]
mask_position = torch.tensor([mask_positions[torch.randint(len(mask_positions), (1,))]])
logits = model(idx_seq, idx_msa, attn_idx)
mask_logits = logits[0, mask_position.item(), :]
predicted_token_id = temperature_sampling(mask_logits, τ)
predicted_token = vocab_mlm.to_tokens(int(predicted_token_id))
input_text[mask_position.item()] = predicted_token
padded_seq[mask_position.item()] = predicted_token.strip()
new_seq = padded_seq
generated_seq = input_text
generated_seq[1] = "[MASK]"
generated_seq[2] = "[MASK]"
input_ids = vocab_mlm.__getitem__(generated_seq)
logits = model(torch.tensor([input_ids]).to(device), idx_msa)
cls_mask_logits = logits[0, 1, :]
act_mask_logits = logits[0, 2, :]
cls_probability, cls_mask_probs = torch.topk((torch.softmax(cls_mask_logits, dim=-1)), k=1)
act_probability, act_mask_probs = torch.topk((torch.softmax(act_mask_logits, dim=-1)), k=1)
cls_pos = vocab_mlm.idx_to_token[cls_mask_probs[0].item()]
act_pos = vocab_mlm.idx_to_token[act_mask_probs[0].item()]
cls_probability = cls_probability[0].item()
act_probability = act_probability[0].item()
generated_seq = generated_seq[generated_seq.index('[MASK]') + 2:generated_seq.index('[SEP]')]
if generated_seq.count('C') % 2 == 0 and len("".join(generated_seq)) == gen_len:
generated_seqs.append("".join(generated_seq))
if "".join(generated_seq) not in train_seq and "".join(generated_seq) not in generated_seqs[0:-1] and all(x not in NON_AA for x in generated_seq):
generated_seqs_FINAL.append("".join(generated_seq))
cls_pos_all.append(cls_pos)
cls_probability_all.append(cls_probability)
act_pos_all.append(act_pos)
act_probability_all.append(act_probability)
IDs.append(count+1)
out = pd.DataFrame({
'ID':IDs,
'Generated_seq': generated_seqs_FINAL,
'Subtype': cls_pos_all,
'Subtype_probability': cls_probability_all,
'Potency': act_pos_all,
'Potency_probability': act_probability_all,
'random_seed': seed
})
out.to_csv("output.csv", index=False, encoding='utf-8-sig')
count += 1
yield "output.csv", out
return "output.csv", out
with gr.Blocks() as demo:
gr.Markdown("🔗 **[Label Prediction](https://huggingface.co/spaces/oucgc1996/CreoPep_Label_Prediction)**"
"🔗 **[Unconstrained Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_Unconstrained_generation)**"
"🔗 **[Conditional Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_conditional_generation)**"
"🔗 **[Optimization Generation](https://huggingface.co/spaces/oucgc1996/CreoPep_optimization_generation)**")
gr.Markdown("# Conotoxin Unconstrained Generation")
gr.Markdown("#### Input")
gr.Markdown("✅**τ**: temperature factor controls the diversity of conotoxins generated. The higher the value, the higher the diversity.")
gr.Markdown("✅**Number of generations**: if it is not completed within 1200 seconds, it will automatically stop.")
gr.Markdown("✅**Length range**: expected length range of conotoxins generated.")
gr.Markdown("✅**Model**: model parameters trained at different stages of data augmentation. Please refer to the paper for details.")
gr.Markdown("✅**Seed**: enter an integer as the random seed to ensure reproducible results. The default is random.")
with gr.Row():
τ = gr.Slider(minimum=1, maximum=2, step=0.1, label="τ")
g_num = gr.Dropdown(choices=[1, 10, 20, 30, 40, 50], label="Number of generations")
length_range = RangeSlider(minimum=8, maximum=50, step=1, value=(12, 16), label="Length range")
model_name = gr.Dropdown(choices=['model_final.pt','model_C1.pt','model_C2.pt','model_C3.pt','model_C4.pt','model_C5.pt','model_mlm.pt'], label="Model")
seed = gr.Textbox(label="Seed", value="random")
with gr.Row():
start_button = gr.Button("Start Generation")
stop_button = gr.Button("Stop Generation")
with gr.Row():
output_file = gr.File(label="Download generated conotoxins")
with gr.Row():
output_df = gr.DataFrame(label="Generated Conotoxins")
start_button.click(CTXGen, inputs=[τ, g_num, length_range, model_name, seed], outputs=[output_file, output_df])
stop_button.click(stop_generation, outputs=None)
demo.launch() |