Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,74 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from utils import create_vocab, setup_seed
|
4 |
-
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
|
5 |
-
setup_seed(4)
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
idx_msa =
|
23 |
-
|
24 |
-
if
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
input_ids =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
topk.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
if X1 != "X":
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
iface.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from utils import create_vocab, setup_seed
|
4 |
+
from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab
|
5 |
+
setup_seed(4)
|
6 |
+
|
7 |
+
def CTXGen(X1,X2,X3,model_name):
|
8 |
+
device = torch.device("cpu")
|
9 |
+
vocab_mlm = create_vocab()
|
10 |
+
vocab_mlm = add_tokens_to_vocab(vocab_mlm)
|
11 |
+
save_path = model_name
|
12 |
+
model = torch.load(save_path, weights_only=False, map_location=torch.device('cpu'))
|
13 |
+
model = model.to(device)
|
14 |
+
|
15 |
+
predicted_token_probability_all = []
|
16 |
+
model.eval()
|
17 |
+
topk = []
|
18 |
+
with torch.no_grad():
|
19 |
+
new_seq = None
|
20 |
+
seq = [f"{X1}|{X2}|{X3}|||"]
|
21 |
+
vocab_mlm.token_to_idx["X"] = 4
|
22 |
+
padded_seq, _, idx_msa, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq)
|
23 |
+
idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device)
|
24 |
+
mask_positions = [i for i, token in enumerate(padded_seq) if token == "X"]
|
25 |
+
if not mask_positions:
|
26 |
+
raise ValueError("Nothing found in the sequence to predict.")
|
27 |
+
|
28 |
+
for mask_position in mask_positions:
|
29 |
+
padded_seq[mask_position] = "[MASK]"
|
30 |
+
input_ids = vocab_mlm.__getitem__(padded_seq)
|
31 |
+
input_ids = torch.tensor([input_ids]).to(device)
|
32 |
+
logits = model(input_ids, idx_msa)
|
33 |
+
mask_logits = logits[0, mask_position, :]
|
34 |
+
predicted_token_probability, predicted_token_id = torch.topk((torch.softmax(mask_logits, dim=-1)), k=5)
|
35 |
+
topk.append(predicted_token_id)
|
36 |
+
predicted_token = vocab_mlm.idx_to_token[predicted_token_id[0].item()]
|
37 |
+
predicted_token_probability_all.append(predicted_token_probability[0].item())
|
38 |
+
padded_seq[mask_position] = predicted_token
|
39 |
+
|
40 |
+
cls_pos = vocab_mlm.to_tokens(list(topk[0]))
|
41 |
+
if X1 != "X":
|
42 |
+
Topk = X1
|
43 |
+
Subtype = X1
|
44 |
+
Potency = padded_seq[2],predicted_token_probability_all[0]
|
45 |
+
elif X2 != "X":
|
46 |
+
Topk = cls_pos
|
47 |
+
Subtype = padded_seq[1],predicted_token_probability_all[0]
|
48 |
+
Potency = X2
|
49 |
+
else:
|
50 |
+
Topk = cls_pos
|
51 |
+
Subtype = padded_seq[1],predicted_token_probability_all[0]
|
52 |
+
Potency = padded_seq[2],predicted_token_probability_all[1]
|
53 |
+
return Subtype, Potency, Topk
|
54 |
+
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=CTXGen,
|
57 |
+
inputs=[
|
58 |
+
gr.Dropdown(choices=['X','<K16>', '<α1β1γδ>', '<Ca22>', '<AChBP>', '<K13>', '<α1BAR>', '<α1β1ε>', '<α1AAR>', '<GluN3A>', '<α4β2>',
|
59 |
+
'<GluN2B>', '<α75HT3>', '<Na14>', '<α7>', '<GluN2C>', '<NET>', '<NavBh>', '<α6β3β4>', '<Na11>', '<Ca13>',
|
60 |
+
'<Ca12>', '<Na16>', '<α6α3β2>', '<GluN2A>', '<GluN2D>', '<K17>', '<α1β1δε>', '<GABA>', '<α9>', '<K12>',
|
61 |
+
'<Kshaker>', '<α3β4>', '<Na18>', '<α3β2>', '<α6α3β2β3>', '<α1β1δ>', '<α6α3β4β3>', '<α2β2>','<α6β4>', '<α2β4>',
|
62 |
+
'<Na13>', '<Na12>', '<Na15>', '<α4β4>', '<α7α6β2>', '<α1β1γ>', '<NaTTXR>', '<K11>', '<Ca23>',
|
63 |
+
'<α9α10>','<α6α3β4>', '<NaTTXS>', '<Na17>'], label="Subtype"),
|
64 |
+
gr.Dropdown(choices=['X','<high>','low'], label="Potency"),
|
65 |
+
gr.Textbox(label="Conotoxin"),
|
66 |
+
gr.Dropdown(choices=['model_final.pt','model_C1.pt','model_C2.pt','model_C3.pt','model_C4.pt','model_C5.pt','model_mlm.pt'], label="Model")
|
67 |
+
],
|
68 |
+
outputs=[
|
69 |
+
gr.Textbox(label="Subtype"),
|
70 |
+
gr.Textbox(label="Potency"),
|
71 |
+
gr.Textbox(label="Top5")
|
72 |
+
]
|
73 |
+
)
|
74 |
+
iface.launch()
|