|
import torch.nn as nn |
|
import copy, math |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from transformers import AutoModelForMaskedLM, AutoConfig |
|
|
|
from bertmodel import make_bert, make_bert_without_emb |
|
from utils import ContraLoss |
|
|
|
def load_pretrained_model(): |
|
model_checkpoint = "Rostlab/prot_bert" |
|
config = AutoConfig.from_pretrained(model_checkpoint) |
|
model = AutoModelForMaskedLM.from_config(config) |
|
|
|
return model |
|
|
|
class ConoEncoder(nn.Module): |
|
def __init__(self, encoder): |
|
super(ConoEncoder, self).__init__() |
|
|
|
self.encoder = encoder |
|
self.trainable_encoder = make_bert_without_emb() |
|
|
|
|
|
for param in self.encoder.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
def forward(self, x, mask): |
|
feat = self.encoder(x, attention_mask=mask) |
|
feat = list(feat.values())[0] |
|
|
|
feat = self.trainable_encoder(feat, mask) |
|
|
|
return feat |
|
|
|
class MSABlock(nn.Module): |
|
def __init__(self, in_dim, out_dim, vocab_size): |
|
super(MSABlock, self).__init__() |
|
self.embedding = nn.Embedding(vocab_size, in_dim) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(in_dim, out_dim), |
|
nn.LeakyReLU(), |
|
nn.Linear(out_dim, out_dim) |
|
) |
|
self.init() |
|
|
|
def init(self): |
|
for layer in self.mlp.children(): |
|
if isinstance(layer, nn.Linear): |
|
nn.init.xavier_uniform_(layer.weight) |
|
|
|
|
|
def forward(self, x): |
|
x = self.embedding(x) |
|
x = self.mlp(x) |
|
return x |
|
|
|
class ConoModel(nn.Module): |
|
def __init__(self, encoder, msa_block, decoder): |
|
super(ConoModel, self).__init__() |
|
self.encoder = encoder |
|
self.msa_block = msa_block |
|
self.feature_combine = nn.Conv2d(in_channels=4, out_channels=1, kernel_size=1) |
|
self.decoder = decoder |
|
|
|
def forward(self, input_ids, msa, attn_idx=None): |
|
encoder_output = self.encoder.forward(input_ids, attn_idx) |
|
msa_output = self.msa_block(msa) |
|
|
|
encoder_output = encoder_output.view(input_ids.shape[0], 54, -1).unsqueeze(1) |
|
|
|
output = torch.cat([encoder_output*5, msa_output], dim=1) |
|
output = self.feature_combine(output) |
|
output = output.squeeze(1) |
|
logits = self.decoder(output) |
|
|
|
return logits |
|
|
|
class ContraModel(nn.Module): |
|
def __init__(self, cono_encoder): |
|
super(ContraModel, self).__init__() |
|
|
|
self.contra_loss = ContraLoss() |
|
|
|
self.encoder1 = cono_encoder |
|
self.encoder2 = make_bert(404, 6, 128) |
|
|
|
|
|
self.lstm = nn.LSTM(16, 16, batch_first=True) |
|
self.contra_decoder = nn.Sequential( |
|
nn.Linear(128, 64), |
|
nn.LeakyReLU(), |
|
nn.Linear(64, 32), |
|
nn.LeakyReLU(), |
|
nn.Linear(32, 16), |
|
nn.LeakyReLU(), |
|
nn.Dropout(0.1), |
|
) |
|
|
|
|
|
self.pre_classifer = nn.LSTM(128, 64, batch_first=True) |
|
self.classifer = nn.Sequential( |
|
nn.Linear(128, 32), |
|
nn.LeakyReLU(), |
|
nn.Linear(32, 6), |
|
nn.Softmax(dim=-1) |
|
) |
|
|
|
self.init() |
|
|
|
def init(self): |
|
|
|
for layer in self.contra_decoder.children(): |
|
if isinstance(layer, nn.Linear): |
|
nn.init.xavier_uniform_(layer.weight) |
|
for layer in self.classifer.children(): |
|
if isinstance(layer, nn.Linear): |
|
nn.init.xavier_uniform_(layer.weight) |
|
for layer in self.pre_classifer.children(): |
|
if isinstance(layer, nn.Linear): |
|
nn.init.xavier_uniform_(layer.weight) |
|
for layer in self.lstm.children(): |
|
if isinstance(layer, nn.Linear): |
|
nn.init.xavier_uniform_(layer.weight) |
|
|
|
def compute_class_loss(self, feat1, feat2, labels): |
|
_, cls_feat1= self.pre_classifer(feat1) |
|
_, cls_feat2 = self.pre_classifer(feat2) |
|
cls_feat1 = torch.cat([cls_feat1[0], cls_feat1[1]], dim=-1).squeeze(0) |
|
cls_feat2 = torch.cat([cls_feat2[0], cls_feat2[1]], dim=-1).squeeze(0) |
|
|
|
cls1_dis = self.classifer(cls_feat1) |
|
cls2_dis = self.classifer(cls_feat2) |
|
cls1_loss = F.cross_entropy(cls1_dis, labels.to('cuda:0')) |
|
cls2_loss = F.cross_entropy(cls2_dis, labels.to('cuda:0')) |
|
|
|
return cls1_loss, cls2_loss |
|
|
|
def compute_contrastive_loss(self, feat1, feat2): |
|
|
|
contra_feat1 = self.contra_decoder(feat1) |
|
contra_feat2 = self.contra_decoder(feat2) |
|
|
|
_, feat1 = self.lstm(contra_feat1) |
|
_, feat2 = self.lstm(contra_feat2) |
|
feat1 = torch.cat([feat1[0], feat1[1]], dim=-1).squeeze(0) |
|
feat2 = torch.cat([feat2[0], feat2[1]], dim=-1).squeeze(0) |
|
|
|
ctr_loss = self.contra_loss(feat1, feat2) |
|
|
|
return ctr_loss |
|
|
|
def forward(self, x1, x2, labels=None): |
|
loss = dict() |
|
|
|
idx1, attn1 = x1 |
|
idx2, attn2 = x2 |
|
feat1 = self.encoder1(idx1.to('cuda:0'), attn1.to('cuda:0')) |
|
feat2 = self.encoder2(idx2.to('cuda:0'), attn2.to('cuda:0')) |
|
|
|
cls1_loss, cls2_loss = self.compute_class_loss(feat1, feat2, labels) |
|
|
|
ctr_loss = self.compute_contrastive_loss(feat1, feat2) |
|
|
|
loss['cls1_loss'] = cls1_loss |
|
loss['cls2_loss'] = cls2_loss |
|
loss['ctr_loss'] = ctr_loss |
|
|
|
return loss |