|
import torch.nn as nn |
|
import copy, math |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
class Bert(nn.Module): |
|
|
|
def __init__(self, encoder, src_embed): |
|
super(Bert, self).__init__() |
|
|
|
self.encoder = encoder |
|
self.src_embed = src_embed |
|
|
|
def forward(self, src, src_mask): |
|
|
|
return self.encoder(self.src_embed(src), src_mask) |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, layer, N): |
|
super(Encoder, self).__init__() |
|
self.layers = clones(layer, N) |
|
self.norm = LayerNorm(layer.size) |
|
|
|
def forward(self, x, mask): |
|
for layer in self.layers: |
|
x = layer(x, mask) |
|
return self.norm(x) |
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, features, eps=1e-6): |
|
super(LayerNorm, self).__init__() |
|
self.a_2 = nn.Parameter(torch.ones(features)) |
|
self.b_2 = nn.Parameter(torch.zeros(features)) |
|
self.eps = eps |
|
|
|
def forward(self, x): |
|
mean = x.mean(-1, keepdim=True) |
|
std = x.std(-1, keepdim=True) |
|
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 |
|
|
|
class SublayerConnection(nn.Module): |
|
def __init__(self, size, dropout): |
|
super(SublayerConnection, self).__init__() |
|
self.norm = LayerNorm(size) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x, sublayer): |
|
return x + self.dropout(sublayer(self.norm(x))) |
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, size, self_attn, feed_forward, dropout): |
|
super(EncoderLayer, self).__init__() |
|
self.self_attn = self_attn |
|
self.feed_forward = feed_forward |
|
self.sublayer = clones(SublayerConnection(size, dropout), 2) |
|
self.size = size |
|
|
|
def forward(self, x, mask): |
|
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) |
|
return self.sublayer[1](x, self.feed_forward) |
|
|
|
class PositionwiseFeedForward(nn.Module): |
|
def __init__(self, d_model, d_ff, dropout=0.1): |
|
super(PositionwiseFeedForward, self).__init__() |
|
self.w_1 = nn.Linear(d_model, d_ff) |
|
self.w_2 = nn.Linear(d_ff, d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
return self.w_2(self.dropout(F.relu(self.w_1(x)))) |
|
|
|
def make_bert(src_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1): |
|
c = copy.deepcopy |
|
attn = MultiHeadedAttention(h, d_model) |
|
ff = PositionwiseFeedForward(d_model, d_ff, dropout) |
|
position = PositionalEncoding(d_model, dropout) |
|
model = Bert( |
|
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), |
|
|
|
nn.Sequential(Embeddings(d_model, src_vocab), c(position)), |
|
) |
|
|
|
for p in model.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
return model |
|
|
|
def make_bert_without_emb(d_model=128, N=2, d_ff=512, h=8, dropout=0.1): |
|
c = copy.deepcopy |
|
attn = MultiHeadedAttention(h, d_model) |
|
ff = PositionwiseFeedForward(d_model, d_ff, dropout) |
|
trainable_encoder = Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N) |
|
|
|
return trainable_encoder |
|
|
|
|
|
|
|
def clones(module, N): |
|
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) |
|
|
|
def subsequent_mask(size): |
|
attn_shape = (1, size, size) |
|
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') |
|
return torch.from_numpy(subsequent_mask) == 0 |
|
|
|
def attention(query, key, value, mask=None, dropout=None): |
|
d_k = query.size(-1) |
|
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) |
|
if mask is not None: |
|
mask = mask.unsqueeze(-2) |
|
scores = scores.masked_fill(mask == 0, -1e9) |
|
p_attn = F.softmax(scores, dim = -1) |
|
if dropout is not None: |
|
p_attn = dropout(p_attn) |
|
return torch.matmul(p_attn, value), p_attn |
|
|
|
class MultiHeadedAttention(nn.Module): |
|
def __init__(self, h, d_model, dropout=0.1): |
|
super(MultiHeadedAttention, self).__init__() |
|
assert d_model % h == 0 |
|
self.d_k = d_model // h |
|
self.h = h |
|
self.linears = clones(nn.Linear(d_model, d_model), 4) |
|
self.attn = None |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
def forward(self, query, key, value, mask=None): |
|
if mask is not None: |
|
mask = mask.unsqueeze(1) |
|
nbatches = query.size(0) |
|
|
|
query, key, value = \ |
|
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) |
|
for l, x in zip(self.linears, (query, key, value))] |
|
|
|
x, self.attn = attention(query, key, value, mask=mask, |
|
dropout=self.dropout) |
|
|
|
x = x.transpose(1, 2).contiguous() \ |
|
.view(nbatches, -1, self.h * self.d_k) |
|
return self.linears[-1](x) |
|
|
|
class Embeddings(nn.Module): |
|
def __init__(self, d_model, vocab): |
|
super(Embeddings, self).__init__() |
|
self.lut = nn.Embedding(vocab, d_model) |
|
self.d_model = d_model |
|
|
|
def forward(self, x): |
|
return self.lut(x) * math.sqrt(self.d_model) |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout, max_len=5000): |
|
super(PositionalEncoding, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * |
|
-(math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1)].clone().detach() |
|
return self.dropout(x) |
|
|
|
|