|
import streamlit as st
|
|
import pandas as pd
|
|
from recommender import load_movie_data, recommend_movies
|
|
|
|
|
|
df = load_movie_data()
|
|
|
|
st.set_page_config(page_title="Movie Chatbot", layout="centered")
|
|
st.title("π¬ Movie Recommender Chatbot")
|
|
st.write("Answer a few quick questions and get personalized movie suggestions!")
|
|
|
|
|
|
mood = st.radio("What's your mood today?", ["Feel-good", "Intense", "Thought-provoking", "Funny"])
|
|
|
|
|
|
genre = st.selectbox("Pick a genre:", ["Any", "Sci-Fi", "Drama", "Romance", "Action", "Mystery", "Comedy", "Animation", "Thriller"])
|
|
|
|
|
|
min_rating = st.slider("Minimum IMDb rating:", 1.0, 10.0, 7.0)
|
|
|
|
|
|
if st.button("π₯ Recommend Movies"):
|
|
st.write("Here are some movies you might like:")
|
|
|
|
results = recommend_movies(
|
|
df,
|
|
mood=None if mood == "Any" else mood,
|
|
genre=None if genre == "Any" else genre,
|
|
min_rating=min_rating
|
|
)
|
|
|
|
if not results.empty:
|
|
for _, row in results.iterrows():
|
|
if pd.notna(row["poster"]):
|
|
st.image(row["poster"], width=200)
|
|
|
|
st.markdown(f"**π¬ {row['title']}** ({row['year']}) β *{row['genre']}*")
|
|
st.write(f"β {row['rating']}")
|
|
st.markdown("---")
|
|
else:
|
|
st.warning("No movies matched your filters. Try relaxing the criteria!")
|
|
|