DPS / app.py
ositamiles's picture
Update app.py
3a7d9b9 verified
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import LSTM, Dense, Input, MultiHeadAttention, LayerNormalization, GlobalAveragePooling1D
from tensorflow.keras.optimizers import Adam
import joblib
import os
import openai
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
import gym
from gym import spaces
# Set page config
st.set_page_config(page_title="Advanced Dynamic Game Pricing App", layout="wide")
# OpenAI API key
openai.api_key = "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"
# Function to load or create data
@st.cache_data
def load_data():
if os.path.exists('game_data.csv'):
return pd.read_csv('game_data.csv')
else:
# Sample dataset with time series data
data = {
'game_id': np.repeat(range(1, 21), 50),
'date': np.tile(pd.date_range(start='2020-01-01', periods=50), 20),
'genre': np.repeat(np.random.choice(['RPG', 'FPS', 'Strategy', 'Puzzle', 'Sports'], 20), 50),
'region': np.repeat(np.random.choice(['Africa', 'NA', 'EU', 'Asia', 'SA'], 20), 50),
'demand_index': np.random.uniform(0.1, 1.0, 1000),
'competitor_price': np.random.uniform(20, 60, 1000),
'past_sales': np.random.randint(100, 1000, 1000),
'price': np.random.uniform(25, 65, 1000)
}
df = pd.DataFrame(data)
df.to_csv('game_data.csv', index=False)
return df
# Load data
df = load_data()
# LSTM Model
def create_lstm_model(input_shape):
model = Sequential([
LSTM(64, return_sequences=True, input_shape=input_shape),
LSTM(32),
Dense(1)
])
model.compile(optimizer='adam', loss='mse')
return model
# Transformer Model
def create_transformer_model(input_shape):
inputs = Input(shape=input_shape)
x = transformer_encoder(inputs, head_size=256, num_heads=4, ff_dim=4, dropout=0.1)
x = GlobalAveragePooling1D()(x)
outputs = Dense(1)(x)
model = Model(inputs, outputs)
# Compile the model
model.compile(optimizer='adam', loss='mse')
return model
def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0):
x = MultiHeadAttention(key_dim=head_size, num_heads=num_heads, dropout=dropout)(inputs, inputs)
x = LayerNormalization(epsilon=1e-6)(x)
res = x + inputs
x = Dense(ff_dim, activation="relu")(res)
x = Dense(inputs.shape[-1])(x)
return LayerNormalization(epsilon=1e-6)(x + res)
# RL Environment
class PricingEnv(gym.Env):
def __init__(self, data):
super(PricingEnv, self).__init__()
self.data = data
self.current_step = 0
self.max_steps = len(data) - 1
self.action_space = gym.spaces.Box(low=0, high=100, shape=(1,), dtype=np.float32)
self.observation_space = gym.spaces.Box(low=0, high=np.inf, shape=(6,), dtype=np.float32)
def step(self, action):
reward = self._get_reward(action)
self.current_step += 1
done = self.current_step >= self.max_steps
obs = self._get_observation()
return obs, reward, done, {} # Removed the 'truncated' flag for compatibility
def reset(self):
self.current_step = 0
return self._get_observation()
def _get_observation(self):
if self.current_step > self.max_steps:
# If we've gone past the end of the data, return the last valid observation
step = self.max_steps
else:
step = self.current_step
obs = self.data.iloc[step][['demand_index', 'competitor_price', 'past_sales', 'genre_encoded', 'region_encoded']].values
return np.append(obs, step)
def _get_reward(self, action):
if self.current_step > self.max_steps:
return 0 # Or some other appropriate value for going out of bounds
price = action[0]
actual_price = self.data.iloc[self.current_step]['price']
return -abs(price - actual_price)
# Function to get LLM analysis
def get_llm_analysis(game_info, market_info):
prompt = f"""
Analyze the following game and market information for pricing strategy:
Game Information:
{game_info}
Market Information:
{market_info}
Based on this information, suggest a pricing strategy and any factors that might influence the game's price.
Provide your analysis in a structured format with clear recommendations.
"""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert in game pricing and market trends."},
{"role": "user", "content": prompt}
],
max_tokens=300,
n=1,
stop=None,
temperature=0.7,
)
return response['choices'][0]['message']['content']
# Sidebar for navigation
page = st.sidebar.selectbox("Choose a page", ["Data Explorer", "Model Training", "Price Prediction"])
if page == "Data Explorer":
st.title("Data Explorer")
st.write(df)
st.subheader("Data Statistics")
st.write(df.describe())
st.subheader("Data Visualization")
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
ax[0].scatter(df['competitor_price'], df['price'])
ax[0].set_xlabel('Competitor Price')
ax[0].set_ylabel('Price')
ax[0].set_title('Competitor Price vs Price')
ax[1].scatter(df['demand_index'], df['price'])
ax[1].set_xlabel('Demand Index')
ax[1].set_ylabel('Price')
ax[1].set_title('Demand Index vs Price')
st.pyplot(fig)
elif page == "Model Training":
st.title("Model Training")
# Data preprocessing
le_genre = LabelEncoder()
df['genre_encoded'] = le_genre.fit_transform(df['genre'])
le_region = LabelEncoder()
df['region_encoded'] = le_region.fit_transform(df['region'])
features = ['genre_encoded', 'region_encoded', 'demand_index', 'competitor_price', 'past_sales']
X = df[features]
y = df['price']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Reshape data for LSTM
X_lstm = X_scaled.reshape((X_scaled.shape[0], 1, X_scaled.shape[1]))
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X_lstm, y, test_size=0.2, random_state=42)
# Model training
if st.button("Train Models"):
with st.spinner("Training LSTM model..."):
lstm_model = create_lstm_model((1, X_train.shape[2]))
lstm_history = lstm_model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=0)
with st.spinner("Training Transformer model..."):
transformer_model = create_transformer_model((1, X_train.shape[2]))
transformer_history = transformer_model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=0)
with st.spinner("Training RL model..."):
env = DummyVecEnv([lambda: PricingEnv(df)])
rl_model = PPO("MlpPolicy", env, verbose=0)
rl_model.learn(total_timesteps=10000)
st.success("All models trained successfully!")
# Plot training history
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
ax1.plot(lstm_history.history['loss'], label='LSTM Training Loss')
ax1.plot(lstm_history.history['val_loss'], label='LSTM Validation Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss')
ax1.legend()
ax1.set_title('LSTM Training History')
ax2.plot(transformer_history.history['loss'], label='Transformer Training Loss')
ax2.plot(transformer_history.history['val_loss'], label='Transformer Validation Loss')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Loss')
ax2.legend()
ax2.set_title('Transformer Training History')
st.pyplot(fig)
# Save models and preprocessing objects
lstm_model.save('lstm_model.h5')
transformer_model.save('transformer_model.h5')
rl_model.save('rl_model')
joblib.dump(scaler, 'scaler.pkl')
joblib.dump(le_genre, 'le_genre.pkl')
joblib.dump(le_region, 'le_region.pkl')
st.info("Models and preprocessing objects saved.")
elif page == "Price Prediction":
st.title("Price Prediction")
# Load saved models and objects
if os.path.exists('lstm_model.h5') and os.path.exists('transformer_model.h5') and os.path.exists('rl_model.zip'):
lstm_model = tf.keras.models.load_model('lstm_model.h5')
transformer_model = tf.keras.models.load_model('transformer_model.h5')
rl_model = PPO.load('rl_model')
scaler = joblib.load('scaler.pkl')
le_genre = joblib.load('le_genre.pkl')
le_region = joblib.load('le_region.pkl')
# User input
genre = st.selectbox("Select Genre", le_genre.classes_)
region = st.selectbox("Select Region", le_region.classes_)
demand_index = st.slider("Demand Index", 0.1, 1.0, 0.5)
competitor_price = st.slider("Competitor Price", 20.0, 60.0, 40.0)
past_sales = st.slider("Past Sales", 100, 1000, 500)
# Prepare input for prediction
input_data = np.array([
le_genre.transform([genre])[0],
le_region.transform([region])[0],
demand_index,
competitor_price,
past_sales
])
input_scaled = scaler.transform(input_data.reshape(1, -1)).flatten()
input_with_step = np.append(input_scaled, 0) # Add a step value (0 for prediction)
# Make predictions
if st.button("Predict Price"):
lstm_price = lstm_model.predict(input_scaled.reshape(1, 1, -1))[0][0]
transformer_price = transformer_model.predict(input_scaled.reshape(1, 1, -1))[0][0]
rl_price = rl_model.predict(input_with_step)[0]
# Extract the single float value from the RL prediction
rl_price_value = rl_price.item() if isinstance(rl_price, np.ndarray) else rl_price
# Display results
st.success(f"LSTM Predicted Price: ${lstm_price:.2f}")
st.success(f"Transformer Predicted Price: ${transformer_price:.2f}")
st.success(f"RL Predicted Price: ${rl_price_value:.2f}")
# Get LLM analysis
game_info = f"Genre: {genre}, Region: {region}, Past Sales: {past_sales}"
market_info = f"Demand Index: {demand_index}, Competitor Price: {competitor_price}"
llm_analysis = get_llm_analysis(game_info, market_info)
st.subheader("LLM Pricing Analysis:")
st.write(llm_analysis)
# Visualize the predictions
fig, ax = plt.subplots(figsize=(10, 5))
models = ['LSTM', 'Transformer', 'RL', 'Competitor']
prices = [lstm_price, transformer_price, rl_price, competitor_price]
ax.bar(models, prices)
ax.set_ylabel('Price ($)')
ax.set_title('Price Comparison')
st.pyplot(fig)
st.info("Consider all model predictions and the LLM analysis to make a final pricing decision.")
else:
st.warning("Please train the models first!")
st.sidebar.info("This app demonstrates advanced dynamic pricing for game codes using LSTMs, Transformers, RL, and LLM analysis.")