Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,245 Bytes
304b6b3 12f0ce7 304b6b3 df0e464 304b6b3 d9b3bd5 b0567c9 e88bab2 b0567c9 e88bab2 d9b3bd5 b0567c9 d9b3bd5 336bb36 ba89e47 336bb36 b0567c9 d9b3bd5 cdf4f83 d9b3bd5 b0567c9 d9b3bd5 b0567c9 d9b3bd5 b0567c9 e88bab2 b0567c9 d9b3bd5 9a6682b d9b3bd5 e88bab2 d9b3bd5 d64a45c b0567c9 d9b3bd5 b0567c9 d9b3bd5 8435349 4f2d448 8435349 4f2d448 8435349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import argparse
import gradio as gr
import os
from PIL import Image # This was missing
import spaces
import copy
import numpy as np # Required if you're doing image array work
from kimi_vl.serve.frontend import reload_javascript
from kimi_vl.serve.utils import (
configure_logger,
pil_to_base64,
parse_ref_bbox,
strip_stop_words,
is_variable_assigned,
)
from kimi_vl.serve.gradio_utils import (
cancel_outputing,
delete_last_conversation,
reset_state,
reset_textbox,
transfer_input,
wrap_gen_fn,
)
from kimi_vl.serve.chat_utils import (
generate_prompt_with_history,
convert_conversation_to_prompts,
to_gradio_chatbot,
to_gradio_history,
)
from kimi_vl.serve.inference import kimi_vl_generate, load_model
from kimi_vl.serve.examples import get_examples
TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Kimi-VL-A3B-Thinking🤔 </h1>"""
DESCRIPTION_TOP = """<a href="https://github.com/MoonshotAI/Kimi-VL" target="_blank">Kimi-VL-A3B-Thinking</a> is a multi-modal LLM that can understand text, video images, and generate text with thinking processes. \n this specific space was hacked to also accept videos, and the system prompt has been changed to favor video analysis."""
DESCRIPTION = """"""
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DEPLOY_MODELS = dict()
logger = configure_logger()
def resize_image(image: Image.Image, max_size: int = 640, min_size: int = 28):
width, height = image.size
if width < min_size or height < min_size:
scale = min_size / min(width, height)
new_width = int(width * scale)
new_height = int(height * scale)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
elif max_size > 0 and (width > max_size or height > max_size):
scale = max_size / max(width, height)
new_width = int(width * scale)
new_height = int(height * scale)
image = image.resize((new_width, new_height))
return image
def load_frames(video_file, max_num_frames=64, long_edge=448):
from decord import VideoReader
vr = VideoReader(video_file)
duration = len(vr)
fps = vr.get_avg_fps()
length = int(duration / fps)
num_frames = min(max_num_frames, length)
frame_indices = [int(duration / num_frames * (i + 0.5)) for i in range(num_frames)]
frames_data = vr.get_batch(frame_indices).asnumpy()
imgs = []
for idx in range(num_frames):
img = resize_image(Image.fromarray(frames_data[idx]).convert("RGB"), long_edge)
imgs.append(img)
return imgs
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="Kimi-VL-A3B-Thinking")
parser.add_argument("--local-path", type=str, default="", help="huggingface ckpt, optional")
parser.add_argument("--ip", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
return parser.parse_args()
def fetch_model(model_name: str):
global args, DEPLOY_MODELS
if args.local_path:
model_path = args.local_path
else:
model_path = f"moonshotai/{args.model}"
if model_name in DEPLOY_MODELS:
model_info = DEPLOY_MODELS[model_name]
print(f"{model_name} has been loaded.")
else:
print(f"{model_name} is loading...")
DEPLOY_MODELS[model_name] = load_model(model_path)
print(f"Load {model_name} successfully...")
model_info = DEPLOY_MODELS[model_name]
return model_info
def highlight_thinking(msg: str) -> str:
msg = copy.deepcopy(msg)
if "◁think▷" in msg:
msg = msg.replace("◁think▷", "<b style='color:blue;'>🤔Thinking...</b>\n")
if "◁/think▷" in msg:
msg = msg.replace("◁/think▷", "\n<b style='color:purple;'>💡Summary</b>\n")
return msg
@wrap_gen_fn
@spaces.GPU(duration=180)
def predict(
text,
images,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
video_num_frames,
video_long_edge,
chunk_size: int = 512,
):
print("running the prediction function")
try:
model, processor = fetch_model(args.model)
if text == "":
yield chatbot, history, "Empty context."
return
except KeyError:
yield [[text, "No Model Found"]], [], "No Model Found"
return
if images is None:
images = []
pil_images = []
for img_or_file in images:
try:
if isinstance(img_or_file, Image.Image):
pil_images.append(img_or_file)
else:
image = Image.open(img_or_file.name).convert("RGB")
pil_images.append(image)
except:
try:
pil_images = load_frames(img_or_file, video_num_frames, video_long_edge)
break
except Exception as e:
print(f"Error loading image or video: {e}")
conversation = generate_prompt_with_history(
text=text,
images=pil_images,
history=history,
processor=processor,
max_length=max_context_length_tokens,
)
all_conv, last_image = convert_conversation_to_prompts(conversation)
stop_words = conversation.stop_str
gradio_chatbot_output = to_gradio_chatbot(conversation)
full_response = ""
for x in kimi_vl_generate(
conversations=all_conv,
model=model,
processor=processor,
stop_words=stop_words,
max_length=max_length_tokens,
temperature=temperature,
top_p=top_p,
):
full_response += x
response = strip_stop_words(full_response, stop_words)
conversation.update_last_message(response)
gradio_chatbot_output[-1][1] = highlight_thinking(response)
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
if last_image is not None:
vg_image = parse_ref_bbox(response, last_image)
if vg_image is not None:
vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400)
gradio_chatbot_output[-1][1] += vg_base64
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
logger.info("flushed result to gradio")
if is_variable_assigned("x"):
print(f"temperature: {temperature}, top_p: {top_p}, max_length_tokens: {max_length_tokens}")
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
# ------------------------------
# Interface + Launch
# ------------------------------
if __name__ == "__main__":
args = parse_args()
reload_javascript()
with gr.Blocks(title="Kimi-VL") as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION_TOP)
with gr.Row():
text_input = gr.Textbox(label="Enter your message", scale=4)
image_input = gr.File(label="Upload image or video", file_types=["image", "video"], file_count="multiple")
chatbot_output = gr.Chatbot(label="Kimi-VL Output")
history_state = gr.State([])
top_p = gr.Slider(0, 1, value=0.9, label="Top-p")
temperature = gr.Slider(0.1, 1.5, value=0.6, label="Temperature")
max_length_tokens = gr.Slider(16, 4096, value=2048, step=64, label="Max Length")
max_context_length_tokens = gr.Slider(128, 4096, value=2048, step=64, label="Max Context")
video_num_frames = gr.Slider(4, 64, value=24, step=4, label="Frames (for video)")
video_long_edge = gr.Slider(128, 1024, value=1024, step=32, label="Long edge resize (video)")
submit_btn = gr.Button("Submit")
submit_btn.click(
predict,
inputs=[
text_input,
image_input,
chatbot_output,
history_state,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
video_num_frames,
video_long_edge,
],
outputs=[chatbot_output, history_state, gr.Textbox(visible=False)],
)
demo.queue().launch(server_name=args.ip, server_port=args.port)
|