|
|
|
|
|
import math |
|
import warnings |
|
from pathlib import Path |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
from PIL import __version__ as pil_version |
|
|
|
from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, TryExcept, ops, plt_settings, threaded |
|
from ultralytics.utils.checks import check_font, check_version, is_ascii |
|
from ultralytics.utils.files import increment_path |
|
|
|
|
|
class Colors: |
|
""" |
|
Ultralytics color palette https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Colors. |
|
|
|
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to |
|
RGB values. |
|
|
|
Attributes: |
|
palette (list of tuple): List of RGB color values. |
|
n (int): The number of colors in the palette. |
|
pose_palette (np.ndarray): A specific color palette array with dtype np.uint8. |
|
|
|
## Ultralytics Color Palette |
|
|
|
| Index | Color | HEX | RGB | |
|
|-------|-------------------------------------------------------------------|-----------|-------------------| |
|
| 0 | <i class="fa-solid fa-square fa-2xl" style="color: #042aff;"></i> | `#042aff` | (4, 42, 255) | |
|
| 1 | <i class="fa-solid fa-square fa-2xl" style="color: #0bdbeb;"></i> | `#0bdbeb` | (11, 219, 235) | |
|
| 2 | <i class="fa-solid fa-square fa-2xl" style="color: #f3f3f3;"></i> | `#f3f3f3` | (243, 243, 243) | |
|
| 3 | <i class="fa-solid fa-square fa-2xl" style="color: #00dfb7;"></i> | `#00dfb7` | (0, 223, 183) | |
|
| 4 | <i class="fa-solid fa-square fa-2xl" style="color: #111f68;"></i> | `#111f68` | (17, 31, 104) | |
|
| 5 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6fdd;"></i> | `#ff6fdd` | (255, 111, 221) | |
|
| 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff444f;"></i> | `#ff444f` | (255, 68, 79) | |
|
| 7 | <i class="fa-solid fa-square fa-2xl" style="color: #cced00;"></i> | `#cced00` | (204, 237, 0) | |
|
| 8 | <i class="fa-solid fa-square fa-2xl" style="color: #00f344;"></i> | `#00f344` | (0, 243, 68) | |
|
| 9 | <i class="fa-solid fa-square fa-2xl" style="color: #bd00ff;"></i> | `#bd00ff` | (189, 0, 255) | |
|
| 10 | <i class="fa-solid fa-square fa-2xl" style="color: #00b4ff;"></i> | `#00b4ff` | (0, 180, 255) | |
|
| 11 | <i class="fa-solid fa-square fa-2xl" style="color: #dd00ba;"></i> | `#dd00ba` | (221, 0, 186) | |
|
| 12 | <i class="fa-solid fa-square fa-2xl" style="color: #00ffff;"></i> | `#00ffff` | (0, 255, 255) | |
|
| 13 | <i class="fa-solid fa-square fa-2xl" style="color: #26c000;"></i> | `#26c000` | (38, 192, 0) | |
|
| 14 | <i class="fa-solid fa-square fa-2xl" style="color: #01ffb3;"></i> | `#01ffb3` | (1, 255, 179) | |
|
| 15 | <i class="fa-solid fa-square fa-2xl" style="color: #7d24ff;"></i> | `#7d24ff` | (125, 36, 255) | |
|
| 16 | <i class="fa-solid fa-square fa-2xl" style="color: #7b0068;"></i> | `#7b0068` | (123, 0, 104) | |
|
| 17 | <i class="fa-solid fa-square fa-2xl" style="color: #ff1b6c;"></i> | `#ff1b6c` | (255, 27, 108) | |
|
| 18 | <i class="fa-solid fa-square fa-2xl" style="color: #fc6d2f;"></i> | `#fc6d2f` | (252, 109, 47) | |
|
| 19 | <i class="fa-solid fa-square fa-2xl" style="color: #a2ff0b;"></i> | `#a2ff0b` | (162, 255, 11) | |
|
|
|
## Pose Color Palette |
|
|
|
| Index | Color | HEX | RGB | |
|
|-------|-------------------------------------------------------------------|-----------|-------------------| |
|
| 0 | <i class="fa-solid fa-square fa-2xl" style="color: #ff8000;"></i> | `#ff8000` | (255, 128, 0) | |
|
| 1 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9933;"></i> | `#ff9933` | (255, 153, 51) | |
|
| 2 | <i class="fa-solid fa-square fa-2xl" style="color: #ffb266;"></i> | `#ffb266` | (255, 178, 102) | |
|
| 3 | <i class="fa-solid fa-square fa-2xl" style="color: #e6e600;"></i> | `#e6e600` | (230, 230, 0) | |
|
| 4 | <i class="fa-solid fa-square fa-2xl" style="color: #ff99ff;"></i> | `#ff99ff` | (255, 153, 255) | |
|
| 5 | <i class="fa-solid fa-square fa-2xl" style="color: #99ccff;"></i> | `#99ccff` | (153, 204, 255) | |
|
| 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff66ff;"></i> | `#ff66ff` | (255, 102, 255) | |
|
| 7 | <i class="fa-solid fa-square fa-2xl" style="color: #ff33ff;"></i> | `#ff33ff` | (255, 51, 255) | |
|
| 8 | <i class="fa-solid fa-square fa-2xl" style="color: #66b2ff;"></i> | `#66b2ff` | (102, 178, 255) | |
|
| 9 | <i class="fa-solid fa-square fa-2xl" style="color: #3399ff;"></i> | `#3399ff` | (51, 153, 255) | |
|
| 10 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9999;"></i> | `#ff9999` | (255, 153, 153) | |
|
| 11 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6666;"></i> | `#ff6666` | (255, 102, 102) | |
|
| 12 | <i class="fa-solid fa-square fa-2xl" style="color: #ff3333;"></i> | `#ff3333` | (255, 51, 51) | |
|
| 13 | <i class="fa-solid fa-square fa-2xl" style="color: #99ff99;"></i> | `#99ff99` | (153, 255, 153) | |
|
| 14 | <i class="fa-solid fa-square fa-2xl" style="color: #66ff66;"></i> | `#66ff66` | (102, 255, 102) | |
|
| 15 | <i class="fa-solid fa-square fa-2xl" style="color: #33ff33;"></i> | `#33ff33` | (51, 255, 51) | |
|
| 16 | <i class="fa-solid fa-square fa-2xl" style="color: #00ff00;"></i> | `#00ff00` | (0, 255, 0) | |
|
| 17 | <i class="fa-solid fa-square fa-2xl" style="color: #0000ff;"></i> | `#0000ff` | (0, 0, 255) | |
|
| 18 | <i class="fa-solid fa-square fa-2xl" style="color: #ff0000;"></i> | `#ff0000` | (255, 0, 0) | |
|
| 19 | <i class="fa-solid fa-square fa-2xl" style="color: #ffffff;"></i> | `#ffffff` | (255, 255, 255) | |
|
|
|
!!! note "Ultralytics Brand Colors" |
|
|
|
For Ultralytics brand colors see [https://www.ultralytics.com/brand](https://www.ultralytics.com/brand). Please use the official Ultralytics colors for all marketing materials. |
|
""" |
|
|
|
def __init__(self): |
|
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" |
|
hexs = ( |
|
"042AFF", |
|
"0BDBEB", |
|
"F3F3F3", |
|
"00DFB7", |
|
"111F68", |
|
"FF6FDD", |
|
"FF444F", |
|
"CCED00", |
|
"00F344", |
|
"BD00FF", |
|
"00B4FF", |
|
"DD00BA", |
|
"00FFFF", |
|
"26C000", |
|
"01FFB3", |
|
"7D24FF", |
|
"7B0068", |
|
"FF1B6C", |
|
"FC6D2F", |
|
"A2FF0B", |
|
) |
|
self.palette = [self.hex2rgb(f"#{c}") for c in hexs] |
|
self.n = len(self.palette) |
|
self.pose_palette = np.array( |
|
[ |
|
[255, 128, 0], |
|
[255, 153, 51], |
|
[255, 178, 102], |
|
[230, 230, 0], |
|
[255, 153, 255], |
|
[153, 204, 255], |
|
[255, 102, 255], |
|
[255, 51, 255], |
|
[102, 178, 255], |
|
[51, 153, 255], |
|
[255, 153, 153], |
|
[255, 102, 102], |
|
[255, 51, 51], |
|
[153, 255, 153], |
|
[102, 255, 102], |
|
[51, 255, 51], |
|
[0, 255, 0], |
|
[0, 0, 255], |
|
[255, 0, 0], |
|
[255, 255, 255], |
|
], |
|
dtype=np.uint8, |
|
) |
|
|
|
def __call__(self, i, bgr=False): |
|
"""Converts hex color codes to RGB values.""" |
|
c = self.palette[int(i) % self.n] |
|
return (c[2], c[1], c[0]) if bgr else c |
|
|
|
@staticmethod |
|
def hex2rgb(h): |
|
"""Converts hex color codes to RGB values (i.e. default PIL order).""" |
|
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4)) |
|
|
|
|
|
colors = Colors() |
|
|
|
|
|
class Annotator: |
|
""" |
|
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations. |
|
|
|
Attributes: |
|
im (Image.Image or numpy array): The image to annotate. |
|
pil (bool): Whether to use PIL or cv2 for drawing annotations. |
|
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations. |
|
lw (float): Line width for drawing. |
|
skeleton (List[List[int]]): Skeleton structure for keypoints. |
|
limb_color (List[int]): Color palette for limbs. |
|
kpt_color (List[int]): Color palette for keypoints. |
|
""" |
|
|
|
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"): |
|
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" |
|
non_ascii = not is_ascii(example) |
|
input_is_pil = isinstance(im, Image.Image) |
|
self.pil = pil or non_ascii or input_is_pil |
|
self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2) |
|
if self.pil: |
|
self.im = im if input_is_pil else Image.fromarray(im) |
|
self.draw = ImageDraw.Draw(self.im) |
|
try: |
|
font = check_font("Arial.Unicode.ttf" if non_ascii else font) |
|
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12) |
|
self.font = ImageFont.truetype(str(font), size) |
|
except Exception: |
|
self.font = ImageFont.load_default() |
|
|
|
if check_version(pil_version, "9.2.0"): |
|
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] |
|
else: |
|
assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images." |
|
self.im = im if im.flags.writeable else im.copy() |
|
self.tf = max(self.lw - 1, 1) |
|
self.sf = self.lw / 3 |
|
|
|
self.skeleton = [ |
|
[16, 14], |
|
[14, 12], |
|
[17, 15], |
|
[15, 13], |
|
[12, 13], |
|
[6, 12], |
|
[7, 13], |
|
[6, 7], |
|
[6, 8], |
|
[7, 9], |
|
[8, 10], |
|
[9, 11], |
|
[2, 3], |
|
[1, 2], |
|
[1, 3], |
|
[2, 4], |
|
[3, 5], |
|
[4, 6], |
|
[5, 7], |
|
] |
|
|
|
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]] |
|
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]] |
|
self.dark_colors = { |
|
(235, 219, 11), |
|
(243, 243, 243), |
|
(183, 223, 0), |
|
(221, 111, 255), |
|
(0, 237, 204), |
|
(68, 243, 0), |
|
(255, 255, 0), |
|
(179, 255, 1), |
|
(11, 255, 162), |
|
} |
|
self.light_colors = { |
|
(255, 42, 4), |
|
(79, 68, 255), |
|
(255, 0, 189), |
|
(255, 180, 0), |
|
(186, 0, 221), |
|
(0, 192, 38), |
|
(255, 36, 125), |
|
(104, 0, 123), |
|
(108, 27, 255), |
|
(47, 109, 252), |
|
(104, 31, 17), |
|
} |
|
|
|
def get_txt_color(self, color=(128, 128, 128), txt_color=(255, 255, 255)): |
|
""" |
|
Assign text color based on background color. |
|
|
|
Args: |
|
color (tuple, optional): The background color of the rectangle for text (B, G, R). |
|
txt_color (tuple, optional): The color of the text (R, G, B). |
|
|
|
Returns: |
|
txt_color (tuple): Text color for label |
|
""" |
|
if color in self.dark_colors: |
|
return 104, 31, 17 |
|
elif color in self.light_colors: |
|
return 255, 255, 255 |
|
else: |
|
return txt_color |
|
|
|
def circle_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=2): |
|
""" |
|
Draws a label with a background circle centered within a given bounding box. |
|
|
|
Args: |
|
box (tuple): The bounding box coordinates (x1, y1, x2, y2). |
|
label (str): The text label to be displayed. |
|
color (tuple, optional): The background color of the rectangle (B, G, R). |
|
txt_color (tuple, optional): The color of the text (R, G, B). |
|
margin (int, optional): The margin between the text and the rectangle border. |
|
""" |
|
|
|
if len(label) > 3: |
|
print( |
|
f"Length of label is {len(label)}, initial 3 label characters will be considered for circle annotation!" |
|
) |
|
label = label[:3] |
|
|
|
|
|
x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2) |
|
|
|
text_size = cv2.getTextSize(str(label), cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.15, self.tf)[0] |
|
|
|
required_radius = int(((text_size[0] ** 2 + text_size[1] ** 2) ** 0.5) / 2) + margin |
|
|
|
cv2.circle(self.im, (x_center, y_center), required_radius, color, -1) |
|
|
|
text_x = x_center - text_size[0] // 2 |
|
text_y = y_center + text_size[1] // 2 |
|
|
|
cv2.putText( |
|
self.im, |
|
str(label), |
|
(text_x, text_y), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
self.sf - 0.15, |
|
self.get_txt_color(color, txt_color), |
|
self.tf, |
|
lineType=cv2.LINE_AA, |
|
) |
|
|
|
def text_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=5): |
|
""" |
|
Draws a label with a background rectangle centered within a given bounding box. |
|
|
|
Args: |
|
box (tuple): The bounding box coordinates (x1, y1, x2, y2). |
|
label (str): The text label to be displayed. |
|
color (tuple, optional): The background color of the rectangle (B, G, R). |
|
txt_color (tuple, optional): The color of the text (R, G, B). |
|
margin (int, optional): The margin between the text and the rectangle border. |
|
""" |
|
|
|
x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2) |
|
|
|
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.1, self.tf)[0] |
|
|
|
text_x = x_center - text_size[0] // 2 |
|
text_y = y_center + text_size[1] // 2 |
|
|
|
rect_x1 = text_x - margin |
|
rect_y1 = text_y - text_size[1] - margin |
|
rect_x2 = text_x + text_size[0] + margin |
|
rect_y2 = text_y + margin |
|
|
|
cv2.rectangle(self.im, (rect_x1, rect_y1), (rect_x2, rect_y2), color, -1) |
|
|
|
cv2.putText( |
|
self.im, |
|
label, |
|
(text_x, text_y), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
self.sf - 0.1, |
|
self.get_txt_color(color, txt_color), |
|
self.tf, |
|
lineType=cv2.LINE_AA, |
|
) |
|
|
|
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False): |
|
""" |
|
Draws a bounding box to image with label. |
|
|
|
Args: |
|
box (tuple): The bounding box coordinates (x1, y1, x2, y2). |
|
label (str): The text label to be displayed. |
|
color (tuple, optional): The background color of the rectangle (B, G, R). |
|
txt_color (tuple, optional): The color of the text (R, G, B). |
|
rotated (bool, optional): Variable used to check if task is OBB |
|
""" |
|
txt_color = self.get_txt_color(color, txt_color) |
|
if isinstance(box, torch.Tensor): |
|
box = box.tolist() |
|
if self.pil or not is_ascii(label): |
|
if rotated: |
|
p1 = box[0] |
|
self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color) |
|
else: |
|
p1 = (box[0], box[1]) |
|
self.draw.rectangle(box, width=self.lw, outline=color) |
|
if label: |
|
w, h = self.font.getsize(label) |
|
outside = p1[1] >= h |
|
if p1[0] > self.im.size[0] - w: |
|
p1 = self.im.size[0] - w, p1[1] |
|
self.draw.rectangle( |
|
(p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1), |
|
fill=color, |
|
) |
|
|
|
self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font) |
|
else: |
|
if rotated: |
|
p1 = [int(b) for b in box[0]] |
|
cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw) |
|
else: |
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) |
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) |
|
if label: |
|
w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] |
|
h += 3 |
|
outside = p1[1] >= h |
|
if p1[0] > self.im.shape[1] - w: |
|
p1 = self.im.shape[1] - w, p1[1] |
|
p2 = p1[0] + w, p1[1] - h if outside else p1[1] + h |
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) |
|
cv2.putText( |
|
self.im, |
|
label, |
|
(p1[0], p1[1] - 2 if outside else p1[1] + h - 1), |
|
0, |
|
self.sf, |
|
txt_color, |
|
thickness=self.tf, |
|
lineType=cv2.LINE_AA, |
|
) |
|
|
|
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): |
|
""" |
|
Plot masks on image. |
|
|
|
Args: |
|
masks (tensor): Predicted masks on cuda, shape: [n, h, w] |
|
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n] |
|
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1] |
|
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque |
|
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False. |
|
""" |
|
if self.pil: |
|
|
|
self.im = np.asarray(self.im).copy() |
|
if len(masks) == 0: |
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 |
|
if im_gpu.device != masks.device: |
|
im_gpu = im_gpu.to(masks.device) |
|
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 |
|
colors = colors[:, None, None] |
|
masks = masks.unsqueeze(3) |
|
masks_color = masks * (colors * alpha) |
|
|
|
inv_alpha_masks = (1 - masks * alpha).cumprod(0) |
|
mcs = masks_color.max(dim=0).values |
|
|
|
im_gpu = im_gpu.flip(dims=[0]) |
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous() |
|
im_gpu = im_gpu * inv_alpha_masks[-1] + mcs |
|
im_mask = im_gpu * 255 |
|
im_mask_np = im_mask.byte().cpu().numpy() |
|
self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape) |
|
if self.pil: |
|
|
|
self.fromarray(self.im) |
|
|
|
def kpts(self, kpts, shape=(640, 640), radius=None, kpt_line=True, conf_thres=0.25, kpt_color=None): |
|
""" |
|
Plot keypoints on the image. |
|
|
|
Args: |
|
kpts (torch.Tensor): Keypoints, shape [17, 3] (x, y, confidence). |
|
shape (tuple, optional): Image shape (h, w). Defaults to (640, 640). |
|
radius (int, optional): Keypoint radius. Defaults to 5. |
|
kpt_line (bool, optional): Draw lines between keypoints. Defaults to True. |
|
conf_thres (float, optional): Confidence threshold. Defaults to 0.25. |
|
kpt_color (tuple, optional): Keypoint color (B, G, R). Defaults to None. |
|
|
|
Note: |
|
- `kpt_line=True` currently only supports human pose plotting. |
|
- Modifies self.im in-place. |
|
- If self.pil is True, converts image to numpy array and back to PIL. |
|
""" |
|
radius = radius if radius is not None else self.lw |
|
if self.pil: |
|
|
|
self.im = np.asarray(self.im).copy() |
|
nkpt, ndim = kpts.shape |
|
is_pose = nkpt == 17 and ndim in {2, 3} |
|
kpt_line &= is_pose |
|
for i, k in enumerate(kpts): |
|
color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i)) |
|
x_coord, y_coord = k[0], k[1] |
|
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: |
|
if len(k) == 3: |
|
conf = k[2] |
|
if conf < conf_thres: |
|
continue |
|
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA) |
|
|
|
if kpt_line: |
|
ndim = kpts.shape[-1] |
|
for i, sk in enumerate(self.skeleton): |
|
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1])) |
|
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1])) |
|
if ndim == 3: |
|
conf1 = kpts[(sk[0] - 1), 2] |
|
conf2 = kpts[(sk[1] - 1), 2] |
|
if conf1 < conf_thres or conf2 < conf_thres: |
|
continue |
|
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0: |
|
continue |
|
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0: |
|
continue |
|
cv2.line( |
|
self.im, |
|
pos1, |
|
pos2, |
|
kpt_color or self.limb_color[i].tolist(), |
|
thickness=int(np.ceil(self.lw / 2)), |
|
lineType=cv2.LINE_AA, |
|
) |
|
if self.pil: |
|
|
|
self.fromarray(self.im) |
|
|
|
def rectangle(self, xy, fill=None, outline=None, width=1): |
|
"""Add rectangle to image (PIL-only).""" |
|
self.draw.rectangle(xy, fill, outline, width) |
|
|
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False): |
|
"""Adds text to an image using PIL or cv2.""" |
|
if anchor == "bottom": |
|
w, h = self.font.getsize(text) |
|
xy[1] += 1 - h |
|
if self.pil: |
|
if box_style: |
|
w, h = self.font.getsize(text) |
|
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) |
|
|
|
txt_color = (255, 255, 255) |
|
if "\n" in text: |
|
lines = text.split("\n") |
|
_, h = self.font.getsize(text) |
|
for line in lines: |
|
self.draw.text(xy, line, fill=txt_color, font=self.font) |
|
xy[1] += h |
|
else: |
|
self.draw.text(xy, text, fill=txt_color, font=self.font) |
|
else: |
|
if box_style: |
|
w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0] |
|
h += 3 |
|
outside = xy[1] >= h |
|
p2 = xy[0] + w, xy[1] - h if outside else xy[1] + h |
|
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) |
|
|
|
txt_color = (255, 255, 255) |
|
cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA) |
|
|
|
def fromarray(self, im): |
|
"""Update self.im from a numpy array.""" |
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) |
|
self.draw = ImageDraw.Draw(self.im) |
|
|
|
def result(self): |
|
"""Return annotated image as array.""" |
|
return np.asarray(self.im) |
|
|
|
def show(self, title=None): |
|
"""Show the annotated image.""" |
|
im = Image.fromarray(np.asarray(self.im)[..., ::-1]) |
|
if IS_COLAB or IS_KAGGLE: |
|
try: |
|
display(im) |
|
except ImportError as e: |
|
LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}") |
|
else: |
|
im.show(title=title) |
|
|
|
def save(self, filename="image.jpg"): |
|
"""Save the annotated image to 'filename'.""" |
|
cv2.imwrite(filename, np.asarray(self.im)) |
|
|
|
@staticmethod |
|
def get_bbox_dimension(bbox=None): |
|
""" |
|
Calculate the area of a bounding box. |
|
|
|
Args: |
|
bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max). |
|
|
|
Returns: |
|
width (float): Width of the bounding box. |
|
height (float): Height of the bounding box. |
|
area (float): Area enclosed by the bounding box. |
|
""" |
|
x_min, y_min, x_max, y_max = bbox |
|
width = x_max - x_min |
|
height = y_max - y_min |
|
return width, height, width * height |
|
|
|
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5): |
|
""" |
|
Draw region line. |
|
|
|
Args: |
|
reg_pts (list): Region Points (for line 2 points, for region 4 points) |
|
color (tuple): Region Color value |
|
thickness (int): Region area thickness value |
|
""" |
|
cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness) |
|
|
|
|
|
for point in reg_pts: |
|
cv2.circle(self.im, (point[0], point[1]), thickness * 2, color, -1) |
|
|
|
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2): |
|
""" |
|
Draw centroid point and track trails. |
|
|
|
Args: |
|
track (list): object tracking points for trails display |
|
color (tuple): tracks line color |
|
track_thickness (int): track line thickness value |
|
""" |
|
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) |
|
cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness) |
|
cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1) |
|
|
|
def queue_counts_display(self, label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0)): |
|
""" |
|
Displays queue counts on an image centered at the points with customizable font size and colors. |
|
|
|
Args: |
|
label (str): Queue counts label. |
|
points (tuple): Region points for center point calculation to display text. |
|
region_color (tuple): RGB queue region color. |
|
txt_color (tuple): RGB text display color. |
|
""" |
|
x_values = [point[0] for point in points] |
|
y_values = [point[1] for point in points] |
|
center_x = sum(x_values) // len(points) |
|
center_y = sum(y_values) // len(points) |
|
|
|
text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] |
|
text_width = text_size[0] |
|
text_height = text_size[1] |
|
|
|
rect_width = text_width + 20 |
|
rect_height = text_height + 20 |
|
rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2) |
|
rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2) |
|
cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1) |
|
|
|
text_x = center_x - text_width // 2 |
|
text_y = center_y + text_height // 2 |
|
|
|
|
|
cv2.putText( |
|
self.im, |
|
label, |
|
(text_x, text_y), |
|
0, |
|
fontScale=self.sf, |
|
color=txt_color, |
|
thickness=self.tf, |
|
lineType=cv2.LINE_AA, |
|
) |
|
|
|
def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin): |
|
""" |
|
Display the bounding boxes labels in parking management app. |
|
|
|
Args: |
|
im0 (ndarray): Inference image. |
|
text (str): Object/class name. |
|
txt_color (tuple): Display color for text foreground. |
|
bg_color (tuple): Display color for text background. |
|
x_center (float): The x position center point for bounding box. |
|
y_center (float): The y position center point for bounding box. |
|
margin (int): The gap between text and rectangle for better display. |
|
""" |
|
text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0] |
|
text_x = x_center - text_size[0] // 2 |
|
text_y = y_center + text_size[1] // 2 |
|
|
|
rect_x1 = text_x - margin |
|
rect_y1 = text_y - text_size[1] - margin |
|
rect_x2 = text_x + text_size[0] + margin |
|
rect_y2 = text_y + margin |
|
cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1) |
|
cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA) |
|
|
|
def display_analytics(self, im0, text, txt_color, bg_color, margin): |
|
""" |
|
Display the overall statistics for parking lots. |
|
|
|
Args: |
|
im0 (ndarray): Inference image. |
|
text (dict): Labels dictionary. |
|
txt_color (tuple): Display color for text foreground. |
|
bg_color (tuple): Display color for text background. |
|
margin (int): Gap between text and rectangle for better display. |
|
""" |
|
horizontal_gap = int(im0.shape[1] * 0.02) |
|
vertical_gap = int(im0.shape[0] * 0.01) |
|
text_y_offset = 0 |
|
for label, value in text.items(): |
|
txt = f"{label}: {value}" |
|
text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0] |
|
if text_size[0] < 5 or text_size[1] < 5: |
|
text_size = (5, 5) |
|
text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap |
|
text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap |
|
rect_x1 = text_x - margin * 2 |
|
rect_y1 = text_y - text_size[1] - margin * 2 |
|
rect_x2 = text_x + text_size[0] + margin * 2 |
|
rect_y2 = text_y + margin * 2 |
|
cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1) |
|
cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA) |
|
text_y_offset = rect_y2 |
|
|
|
@staticmethod |
|
def estimate_pose_angle(a, b, c): |
|
""" |
|
Calculate the pose angle for object. |
|
|
|
Args: |
|
a (float) : The value of pose point a |
|
b (float): The value of pose point b |
|
c (float): The value o pose point c |
|
|
|
Returns: |
|
angle (degree): Degree value of angle between three points |
|
""" |
|
a, b, c = np.array(a), np.array(b), np.array(c) |
|
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0]) |
|
angle = np.abs(radians * 180.0 / np.pi) |
|
if angle > 180.0: |
|
angle = 360 - angle |
|
return angle |
|
|
|
def draw_specific_points(self, keypoints, indices=None, radius=2, conf_thres=0.25): |
|
""" |
|
Draw specific keypoints for gym steps counting. |
|
|
|
Args: |
|
keypoints (list): Keypoints data to be plotted. |
|
indices (list, optional): Keypoint indices to be plotted. Defaults to [2, 5, 7]. |
|
radius (int, optional): Keypoint radius. Defaults to 2. |
|
conf_thres (float, optional): Confidence threshold for keypoints. Defaults to 0.25. |
|
|
|
Returns: |
|
(numpy.ndarray): Image with drawn keypoints. |
|
|
|
Note: |
|
Keypoint format: [x, y] or [x, y, confidence]. |
|
Modifies self.im in-place. |
|
""" |
|
indices = indices or [2, 5, 7] |
|
points = [(int(k[0]), int(k[1])) for i, k in enumerate(keypoints) if i in indices and k[2] >= conf_thres] |
|
|
|
|
|
for start, end in zip(points[:-1], points[1:]): |
|
cv2.line(self.im, start, end, (0, 255, 0), 2, lineType=cv2.LINE_AA) |
|
|
|
|
|
for pt in points: |
|
cv2.circle(self.im, pt, radius, (0, 0, 255), -1, lineType=cv2.LINE_AA) |
|
|
|
return self.im |
|
|
|
def plot_workout_information(self, display_text, position, color=(104, 31, 17), txt_color=(255, 255, 255)): |
|
""" |
|
Draw text with a background on the image. |
|
|
|
Args: |
|
display_text (str): The text to be displayed. |
|
position (tuple): Coordinates (x, y) on the image where the text will be placed. |
|
color (tuple, optional): Text background color |
|
txt_color (tuple, optional): Text foreground color |
|
""" |
|
(text_width, text_height), _ = cv2.getTextSize(display_text, 0, self.sf, self.tf) |
|
|
|
|
|
cv2.rectangle( |
|
self.im, |
|
(position[0], position[1] - text_height - 5), |
|
(position[0] + text_width + 10, position[1] - text_height - 5 + text_height + 10 + self.tf), |
|
color, |
|
-1, |
|
) |
|
|
|
cv2.putText(self.im, display_text, position, 0, self.sf, txt_color, self.tf) |
|
|
|
return text_height |
|
|
|
def plot_angle_and_count_and_stage( |
|
self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255) |
|
): |
|
""" |
|
Plot the pose angle, count value, and step stage. |
|
|
|
Args: |
|
angle_text (str): Angle value for workout monitoring |
|
count_text (str): Counts value for workout monitoring |
|
stage_text (str): Stage decision for workout monitoring |
|
center_kpt (list): Centroid pose index for workout monitoring |
|
color (tuple, optional): Text background color |
|
txt_color (tuple, optional): Text foreground color |
|
""" |
|
|
|
angle_text, count_text, stage_text = f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}" |
|
|
|
|
|
angle_height = self.plot_workout_information( |
|
angle_text, (int(center_kpt[0]), int(center_kpt[1])), color, txt_color |
|
) |
|
count_height = self.plot_workout_information( |
|
count_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + 20), color, txt_color |
|
) |
|
self.plot_workout_information( |
|
stage_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + count_height + 40), color, txt_color |
|
) |
|
|
|
def seg_bbox(self, mask, mask_color=(255, 0, 255), label=None, txt_color=(255, 255, 255)): |
|
""" |
|
Function for drawing segmented object in bounding box shape. |
|
|
|
Args: |
|
mask (np.ndarray): A 2D array of shape (N, 2) containing the contour points of the segmented object. |
|
mask_color (tuple): RGB color for the contour and label background. |
|
label (str, optional): Text label for the object. If None, no label is drawn. |
|
txt_color (tuple): RGB color for the label text. |
|
""" |
|
if mask.size == 0: |
|
return |
|
|
|
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2) |
|
text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf) |
|
|
|
if label: |
|
cv2.rectangle( |
|
self.im, |
|
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10), |
|
(int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)), |
|
mask_color, |
|
-1, |
|
) |
|
cv2.putText( |
|
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf |
|
) |
|
|
|
def sweep_annotator(self, line_x=0, line_y=0, label=None, color=(221, 0, 186), txt_color=(255, 255, 255)): |
|
""" |
|
Function for drawing a sweep annotation line and an optional label. |
|
|
|
Args: |
|
line_x (int): The x-coordinate of the sweep line. |
|
line_y (int): The y-coordinate limit of the sweep line. |
|
label (str, optional): Text label to be drawn in center of sweep line. If None, no label is drawn. |
|
color (tuple): RGB color for the line and label background. |
|
txt_color (tuple): RGB color for the label text. |
|
""" |
|
|
|
cv2.line(self.im, (line_x, 0), (line_x, line_y), color, self.tf * 2) |
|
|
|
|
|
if label: |
|
(text_width, text_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf, self.tf) |
|
cv2.rectangle( |
|
self.im, |
|
(line_x - text_width // 2 - 10, line_y // 2 - text_height // 2 - 10), |
|
(line_x + text_width // 2 + 10, line_y // 2 + text_height // 2 + 10), |
|
color, |
|
-1, |
|
) |
|
cv2.putText( |
|
self.im, |
|
label, |
|
(line_x - text_width // 2, line_y // 2 + text_height // 2), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
self.sf, |
|
txt_color, |
|
self.tf, |
|
) |
|
|
|
def plot_distance_and_line( |
|
self, pixels_distance, centroids, line_color=(104, 31, 17), centroid_color=(255, 0, 255) |
|
): |
|
""" |
|
Plot the distance and line on frame. |
|
|
|
Args: |
|
pixels_distance (float): Pixels distance between two bbox centroids. |
|
centroids (list): Bounding box centroids data. |
|
line_color (tuple, optional): Distance line color. |
|
centroid_color (tuple, optional): Bounding box centroid color. |
|
""" |
|
|
|
text = f"Pixels Distance: {pixels_distance:.2f}" |
|
(text_width_m, text_height_m), _ = cv2.getTextSize(text, 0, self.sf, self.tf) |
|
|
|
|
|
cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 20, 25 + text_height_m + 20), line_color, -1) |
|
|
|
|
|
text_position = (25, 25 + text_height_m + 10) |
|
cv2.putText( |
|
self.im, |
|
text, |
|
text_position, |
|
0, |
|
self.sf, |
|
(255, 255, 255), |
|
self.tf, |
|
cv2.LINE_AA, |
|
) |
|
|
|
cv2.line(self.im, centroids[0], centroids[1], line_color, 3) |
|
cv2.circle(self.im, centroids[0], 6, centroid_color, -1) |
|
cv2.circle(self.im, centroids[1], 6, centroid_color, -1) |
|
|
|
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255)): |
|
""" |
|
Function for pinpoint human-vision eye mapping and plotting. |
|
|
|
Args: |
|
box (list): Bounding box coordinates |
|
center_point (tuple): center point for vision eye view |
|
color (tuple): object centroid and line color value |
|
pin_color (tuple): visioneye point color value |
|
""" |
|
center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2) |
|
cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1) |
|
cv2.circle(self.im, center_bbox, self.tf * 2, color, -1) |
|
cv2.line(self.im, center_point, center_bbox, color, self.tf) |
|
|
|
|
|
@TryExcept() |
|
@plt_settings() |
|
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None): |
|
"""Plot training labels including class histograms and box statistics.""" |
|
import pandas |
|
import seaborn |
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight") |
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
|
|
|
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") |
|
nc = int(cls.max() + 1) |
|
boxes = boxes[:1000000] |
|
x = pandas.DataFrame(boxes, columns=["x", "y", "width", "height"]) |
|
|
|
|
|
seaborn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) |
|
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200) |
|
plt.close() |
|
|
|
|
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() |
|
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) |
|
for i in range(nc): |
|
y[2].patches[i].set_color([x / 255 for x in colors(i)]) |
|
ax[0].set_ylabel("instances") |
|
if 0 < len(names) < 30: |
|
ax[0].set_xticks(range(len(names))) |
|
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) |
|
else: |
|
ax[0].set_xlabel("classes") |
|
seaborn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9) |
|
seaborn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9) |
|
|
|
|
|
boxes[:, 0:2] = 0.5 |
|
boxes = ops.xywh2xyxy(boxes) * 1000 |
|
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) |
|
for cls, box in zip(cls[:500], boxes[:500]): |
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) |
|
ax[1].imshow(img) |
|
ax[1].axis("off") |
|
|
|
for a in [0, 1, 2, 3]: |
|
for s in ["top", "right", "left", "bottom"]: |
|
ax[a].spines[s].set_visible(False) |
|
|
|
fname = save_dir / "labels.jpg" |
|
plt.savefig(fname, dpi=200) |
|
plt.close() |
|
if on_plot: |
|
on_plot(fname) |
|
|
|
|
|
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True): |
|
""" |
|
Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop. |
|
|
|
This function takes a bounding box and an image, and then saves a cropped portion of the image according |
|
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding |
|
adjustments to the bounding box. |
|
|
|
Args: |
|
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format. |
|
im (numpy.ndarray): The input image. |
|
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'. |
|
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02. |
|
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10. |
|
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False. |
|
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False. |
|
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True. |
|
|
|
Returns: |
|
(numpy.ndarray): The cropped image. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils.plotting import save_one_box |
|
|
|
xyxy = [50, 50, 150, 150] |
|
im = cv2.imread("image.jpg") |
|
cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True) |
|
``` |
|
""" |
|
if not isinstance(xyxy, torch.Tensor): |
|
xyxy = torch.stack(xyxy) |
|
b = ops.xyxy2xywh(xyxy.view(-1, 4)) |
|
if square: |
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) |
|
b[:, 2:] = b[:, 2:] * gain + pad |
|
xyxy = ops.xywh2xyxy(b).long() |
|
xyxy = ops.clip_boxes(xyxy, im.shape) |
|
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)] |
|
if save: |
|
file.parent.mkdir(parents=True, exist_ok=True) |
|
f = str(increment_path(file).with_suffix(".jpg")) |
|
|
|
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) |
|
return crop |
|
|
|
|
|
@threaded |
|
def plot_images( |
|
images: Union[torch.Tensor, np.ndarray], |
|
batch_idx: Union[torch.Tensor, np.ndarray], |
|
cls: Union[torch.Tensor, np.ndarray], |
|
bboxes: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.float32), |
|
confs: Optional[Union[torch.Tensor, np.ndarray]] = None, |
|
masks: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.uint8), |
|
kpts: Union[torch.Tensor, np.ndarray] = np.zeros((0, 51), dtype=np.float32), |
|
paths: Optional[List[str]] = None, |
|
fname: str = "images.jpg", |
|
names: Optional[Dict[int, str]] = None, |
|
on_plot: Optional[Callable] = None, |
|
max_size: int = 1920, |
|
max_subplots: int = 16, |
|
save: bool = True, |
|
conf_thres: float = 0.25, |
|
) -> Optional[np.ndarray]: |
|
""" |
|
Plot image grid with labels, bounding boxes, masks, and keypoints. |
|
|
|
Args: |
|
images: Batch of images to plot. Shape: (batch_size, channels, height, width). |
|
batch_idx: Batch indices for each detection. Shape: (num_detections,). |
|
cls: Class labels for each detection. Shape: (num_detections,). |
|
bboxes: Bounding boxes for each detection. Shape: (num_detections, 4) or (num_detections, 5) for rotated boxes. |
|
confs: Confidence scores for each detection. Shape: (num_detections,). |
|
masks: Instance segmentation masks. Shape: (num_detections, height, width) or (1, height, width). |
|
kpts: Keypoints for each detection. Shape: (num_detections, 51). |
|
paths: List of file paths for each image in the batch. |
|
fname: Output filename for the plotted image grid. |
|
names: Dictionary mapping class indices to class names. |
|
on_plot: Optional callback function to be called after saving the plot. |
|
max_size: Maximum size of the output image grid. |
|
max_subplots: Maximum number of subplots in the image grid. |
|
save: Whether to save the plotted image grid to a file. |
|
conf_thres: Confidence threshold for displaying detections. |
|
|
|
Returns: |
|
np.ndarray: Plotted image grid as a numpy array if save is False, None otherwise. |
|
|
|
Note: |
|
This function supports both tensor and numpy array inputs. It will automatically |
|
convert tensor inputs to numpy arrays for processing. |
|
""" |
|
if isinstance(images, torch.Tensor): |
|
images = images.cpu().float().numpy() |
|
if isinstance(cls, torch.Tensor): |
|
cls = cls.cpu().numpy() |
|
if isinstance(bboxes, torch.Tensor): |
|
bboxes = bboxes.cpu().numpy() |
|
if isinstance(masks, torch.Tensor): |
|
masks = masks.cpu().numpy().astype(int) |
|
if isinstance(kpts, torch.Tensor): |
|
kpts = kpts.cpu().numpy() |
|
if isinstance(batch_idx, torch.Tensor): |
|
batch_idx = batch_idx.cpu().numpy() |
|
|
|
bs, _, h, w = images.shape |
|
bs = min(bs, max_subplots) |
|
ns = np.ceil(bs**0.5) |
|
if np.max(images[0]) <= 1: |
|
images *= 255 |
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) |
|
for i in range(bs): |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0) |
|
|
|
|
|
scale = max_size / ns / max(h, w) |
|
if scale < 1: |
|
h = math.ceil(scale * h) |
|
w = math.ceil(scale * w) |
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) |
|
|
|
|
|
fs = int((h + w) * ns * 0.01) |
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) |
|
for i in range(bs): |
|
x, y = int(w * (i // ns)), int(h * (i % ns)) |
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) |
|
if paths: |
|
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) |
|
if len(cls) > 0: |
|
idx = batch_idx == i |
|
classes = cls[idx].astype("int") |
|
labels = confs is None |
|
|
|
if len(bboxes): |
|
boxes = bboxes[idx] |
|
conf = confs[idx] if confs is not None else None |
|
if len(boxes): |
|
if boxes[:, :4].max() <= 1.1: |
|
boxes[..., [0, 2]] *= w |
|
boxes[..., [1, 3]] *= h |
|
elif scale < 1: |
|
boxes[..., :4] *= scale |
|
boxes[..., 0] += x |
|
boxes[..., 1] += y |
|
is_obb = boxes.shape[-1] == 5 |
|
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes) |
|
for j, box in enumerate(boxes.astype(np.int64).tolist()): |
|
c = classes[j] |
|
color = colors(c) |
|
c = names.get(c, c) if names else c |
|
if labels or conf[j] > conf_thres: |
|
label = f"{c}" if labels else f"{c} {conf[j]:.1f}" |
|
annotator.box_label(box, label, color=color, rotated=is_obb) |
|
|
|
elif len(classes): |
|
for c in classes: |
|
color = colors(c) |
|
c = names.get(c, c) if names else c |
|
annotator.text((x, y), f"{c}", txt_color=color, box_style=True) |
|
|
|
|
|
if len(kpts): |
|
kpts_ = kpts[idx].copy() |
|
if len(kpts_): |
|
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: |
|
kpts_[..., 0] *= w |
|
kpts_[..., 1] *= h |
|
elif scale < 1: |
|
kpts_ *= scale |
|
kpts_[..., 0] += x |
|
kpts_[..., 1] += y |
|
for j in range(len(kpts_)): |
|
if labels or conf[j] > conf_thres: |
|
annotator.kpts(kpts_[j], conf_thres=conf_thres) |
|
|
|
|
|
if len(masks): |
|
if idx.shape[0] == masks.shape[0]: |
|
image_masks = masks[idx] |
|
else: |
|
image_masks = masks[[i]] |
|
nl = idx.sum() |
|
index = np.arange(nl).reshape((nl, 1, 1)) + 1 |
|
image_masks = np.repeat(image_masks, nl, axis=0) |
|
image_masks = np.where(image_masks == index, 1.0, 0.0) |
|
|
|
im = np.asarray(annotator.im).copy() |
|
for j in range(len(image_masks)): |
|
if labels or conf[j] > conf_thres: |
|
color = colors(classes[j]) |
|
mh, mw = image_masks[j].shape |
|
if mh != h or mw != w: |
|
mask = image_masks[j].astype(np.uint8) |
|
mask = cv2.resize(mask, (w, h)) |
|
mask = mask.astype(bool) |
|
else: |
|
mask = image_masks[j].astype(bool) |
|
try: |
|
im[y : y + h, x : x + w, :][mask] = ( |
|
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6 |
|
) |
|
except Exception: |
|
pass |
|
annotator.fromarray(im) |
|
if not save: |
|
return np.asarray(annotator.im) |
|
annotator.im.save(fname) |
|
if on_plot: |
|
on_plot(fname) |
|
|
|
|
|
@plt_settings() |
|
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None): |
|
""" |
|
Plot training results from a results CSV file. The function supports various types of data including segmentation, |
|
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located. |
|
|
|
Args: |
|
file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'. |
|
dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''. |
|
segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False. |
|
pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False. |
|
classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False. |
|
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument. |
|
Defaults to None. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils.plotting import plot_results |
|
|
|
plot_results("path/to/results.csv", segment=True) |
|
``` |
|
""" |
|
import pandas as pd |
|
from scipy.ndimage import gaussian_filter1d |
|
|
|
save_dir = Path(file).parent if file else Path(dir) |
|
if classify: |
|
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True) |
|
index = [2, 5, 3, 4] |
|
elif segment: |
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) |
|
index = [2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 8, 9, 12, 13] |
|
elif pose: |
|
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True) |
|
index = [2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 9, 10, 13, 14] |
|
else: |
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) |
|
index = [2, 3, 4, 5, 6, 9, 10, 11, 7, 8] |
|
ax = ax.ravel() |
|
files = list(save_dir.glob("results*.csv")) |
|
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot." |
|
for f in files: |
|
try: |
|
data = pd.read_csv(f) |
|
s = [x.strip() for x in data.columns] |
|
x = data.values[:, 0] |
|
for i, j in enumerate(index): |
|
y = data.values[:, j].astype("float") |
|
|
|
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) |
|
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) |
|
ax[i].set_title(s[j], fontsize=12) |
|
|
|
|
|
except Exception as e: |
|
LOGGER.warning(f"WARNING: Plotting error for {f}: {e}") |
|
ax[1].legend() |
|
fname = save_dir / "results.png" |
|
fig.savefig(fname, dpi=200) |
|
plt.close() |
|
if on_plot: |
|
on_plot(fname) |
|
|
|
|
|
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"): |
|
""" |
|
Plots a scatter plot with points colored based on a 2D histogram. |
|
|
|
Args: |
|
v (array-like): Values for the x-axis. |
|
f (array-like): Values for the y-axis. |
|
bins (int, optional): Number of bins for the histogram. Defaults to 20. |
|
cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'. |
|
alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8. |
|
edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'. |
|
|
|
Examples: |
|
>>> v = np.random.rand(100) |
|
>>> f = np.random.rand(100) |
|
>>> plt_color_scatter(v, f) |
|
""" |
|
|
|
hist, xedges, yedges = np.histogram2d(v, f, bins=bins) |
|
colors = [ |
|
hist[ |
|
min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1), |
|
min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1), |
|
] |
|
for i in range(len(v)) |
|
] |
|
|
|
|
|
plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors) |
|
|
|
|
|
def plot_tune_results(csv_file="tune_results.csv"): |
|
""" |
|
Plot the evolution results stored in a 'tune_results.csv' file. The function generates a scatter plot for each key |
|
in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots. |
|
|
|
Args: |
|
csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'. |
|
|
|
Examples: |
|
>>> plot_tune_results("path/to/tune_results.csv") |
|
""" |
|
import pandas as pd |
|
from scipy.ndimage import gaussian_filter1d |
|
|
|
def _save_one_file(file): |
|
"""Save one matplotlib plot to 'file'.""" |
|
plt.savefig(file, dpi=200) |
|
plt.close() |
|
LOGGER.info(f"Saved {file}") |
|
|
|
|
|
csv_file = Path(csv_file) |
|
data = pd.read_csv(csv_file) |
|
num_metrics_columns = 1 |
|
keys = [x.strip() for x in data.columns][num_metrics_columns:] |
|
x = data.values |
|
fitness = x[:, 0] |
|
j = np.argmax(fitness) |
|
n = math.ceil(len(keys) ** 0.5) |
|
plt.figure(figsize=(10, 10), tight_layout=True) |
|
for i, k in enumerate(keys): |
|
v = x[:, i + num_metrics_columns] |
|
mu = v[j] |
|
plt.subplot(n, n, i + 1) |
|
plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none") |
|
plt.plot(mu, fitness.max(), "k+", markersize=15) |
|
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) |
|
plt.tick_params(axis="both", labelsize=8) |
|
if i % n != 0: |
|
plt.yticks([]) |
|
_save_one_file(csv_file.with_name("tune_scatter_plots.png")) |
|
|
|
|
|
x = range(1, len(fitness) + 1) |
|
plt.figure(figsize=(10, 6), tight_layout=True) |
|
plt.plot(x, fitness, marker="o", linestyle="none", label="fitness") |
|
plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2) |
|
plt.title("Fitness vs Iteration") |
|
plt.xlabel("Iteration") |
|
plt.ylabel("Fitness") |
|
plt.grid(True) |
|
plt.legend() |
|
_save_one_file(csv_file.with_name("tune_fitness.png")) |
|
|
|
|
|
def output_to_target(output, max_det=300): |
|
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" |
|
targets = [] |
|
for i, o in enumerate(output): |
|
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) |
|
j = torch.full((conf.shape[0], 1), i) |
|
targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1)) |
|
targets = torch.cat(targets, 0).numpy() |
|
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1] |
|
|
|
|
|
def output_to_rotated_target(output, max_det=300): |
|
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" |
|
targets = [] |
|
for i, o in enumerate(output): |
|
box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1) |
|
j = torch.full((conf.shape[0], 1), i) |
|
targets.append(torch.cat((j, cls, box, angle, conf), 1)) |
|
targets = torch.cat(targets, 0).numpy() |
|
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1] |
|
|
|
|
|
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")): |
|
""" |
|
Visualize feature maps of a given model module during inference. |
|
|
|
Args: |
|
x (torch.Tensor): Features to be visualized. |
|
module_type (str): Module type. |
|
stage (int): Module stage within the model. |
|
n (int, optional): Maximum number of feature maps to plot. Defaults to 32. |
|
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp'). |
|
""" |
|
for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}: |
|
if m in module_type: |
|
return |
|
if isinstance(x, torch.Tensor): |
|
_, channels, height, width = x.shape |
|
if height > 1 and width > 1: |
|
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" |
|
|
|
blocks = torch.chunk(x[0].cpu(), channels, dim=0) |
|
n = min(n, channels) |
|
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) |
|
ax = ax.ravel() |
|
plt.subplots_adjust(wspace=0.05, hspace=0.05) |
|
for i in range(n): |
|
ax[i].imshow(blocks[i].squeeze()) |
|
ax[i].axis("off") |
|
|
|
LOGGER.info(f"Saving {f}... ({n}/{channels})") |
|
plt.savefig(f, dpi=300, bbox_inches="tight") |
|
plt.close() |
|
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) |
|
|