|
|
|
"""Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch.""" |
|
|
|
import os |
|
from copy import deepcopy |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr |
|
from ultralytics.utils.torch_utils import autocast, profile |
|
|
|
|
|
def check_train_batch_size(model, imgsz=640, amp=True, batch=-1, max_num_obj=1): |
|
""" |
|
Compute optimal YOLO training batch size using the autobatch() function. |
|
|
|
Args: |
|
model (torch.nn.Module): YOLO model to check batch size for. |
|
imgsz (int, optional): Image size used for training. |
|
amp (bool, optional): Use automatic mixed precision if True. |
|
batch (float, optional): Fraction of GPU memory to use. If -1, use default. |
|
max_num_obj (int, optional): The maximum number of objects from dataset. |
|
|
|
Returns: |
|
(int): Optimal batch size computed using the autobatch() function. |
|
|
|
Note: |
|
If 0.0 < batch < 1.0, it's used as the fraction of GPU memory to use. |
|
Otherwise, a default fraction of 0.6 is used. |
|
""" |
|
with autocast(enabled=amp): |
|
return autobatch( |
|
deepcopy(model).train(), imgsz, fraction=batch if 0.0 < batch < 1.0 else 0.6, max_num_obj=max_num_obj |
|
) |
|
|
|
|
|
def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch, max_num_obj=1): |
|
""" |
|
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory. |
|
|
|
Args: |
|
model (torch.nn.module): YOLO model to compute batch size for. |
|
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640. |
|
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60. |
|
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16. |
|
max_num_obj (int, optional): The maximum number of objects from dataset. |
|
|
|
Returns: |
|
(int): The optimal batch size. |
|
""" |
|
|
|
prefix = colorstr("AutoBatch: ") |
|
LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz} at {fraction * 100}% CUDA memory utilization.") |
|
device = next(model.parameters()).device |
|
if device.type in {"cpu", "mps"}: |
|
LOGGER.info(f"{prefix} ⚠️ intended for CUDA devices, using default batch-size {batch_size}") |
|
return batch_size |
|
if torch.backends.cudnn.benchmark: |
|
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}") |
|
return batch_size |
|
|
|
|
|
gb = 1 << 30 |
|
d = f"CUDA:{os.getenv('CUDA_VISIBLE_DEVICES', '0').strip()[0]}" |
|
properties = torch.cuda.get_device_properties(device) |
|
t = properties.total_memory / gb |
|
r = torch.cuda.memory_reserved(device) / gb |
|
a = torch.cuda.memory_allocated(device) / gb |
|
f = t - (r + a) |
|
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free") |
|
|
|
|
|
batch_sizes = [1, 2, 4, 8, 16] if t < 16 else [1, 2, 4, 8, 16, 32, 64] |
|
try: |
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] |
|
results = profile(img, model, n=1, device=device, max_num_obj=max_num_obj) |
|
|
|
|
|
xy = [ |
|
[x, y[2]] |
|
for i, (x, y) in enumerate(zip(batch_sizes, results)) |
|
if y |
|
and isinstance(y[2], (int, float)) |
|
and 0 < y[2] < t |
|
and (i == 0 or not results[i - 1] or y[2] > results[i - 1][2]) |
|
] |
|
fit_x, fit_y = zip(*xy) if xy else ([], []) |
|
p = np.polyfit(np.log(fit_x), np.log(fit_y), deg=1) |
|
b = int(round(np.exp((np.log(f * fraction) - p[1]) / p[0]))) |
|
if None in results: |
|
i = results.index(None) |
|
if b >= batch_sizes[i]: |
|
b = batch_sizes[max(i - 1, 0)] |
|
if b < 1 or b > 1024: |
|
LOGGER.info(f"{prefix}WARNING ⚠️ batch={b} outside safe range, using default batch-size {batch_size}.") |
|
b = batch_size |
|
|
|
fraction = (np.exp(np.polyval(p, np.log(b))) + r + a) / t |
|
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅") |
|
return b |
|
except Exception as e: |
|
LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.") |
|
return batch_size |
|
finally: |
|
torch.cuda.empty_cache() |
|
|