|
|
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from ultralytics.solutions.solutions import BaseSolution |
|
from ultralytics.utils.plotting import Annotator, colors |
|
|
|
|
|
class TrackZone(BaseSolution): |
|
""" |
|
A class to manage region-based object tracking in a video stream. |
|
|
|
This class extends the BaseSolution class and provides functionality for tracking objects within a specific region |
|
defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization |
|
of the region, allowing either a default region or a user-specified polygon. |
|
|
|
Attributes: |
|
region (ndarray): The polygonal region for tracking, represented as a convex hull. |
|
|
|
Methods: |
|
trackzone: Processes each frame of the video, applying region-based tracking. |
|
|
|
Examples: |
|
>>> tracker = TrackZone() |
|
>>> frame = cv2.imread("frame.jpg") |
|
>>> processed_frame = tracker.trackzone(frame) |
|
>>> cv2.imshow("Tracked Frame", processed_frame) |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
"""Initializes the TrackZone class for tracking objects within a defined region in video streams.""" |
|
super().__init__(**kwargs) |
|
default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)] |
|
self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32)) |
|
|
|
def trackzone(self, im0): |
|
""" |
|
Processes the input frame to track objects within a defined region. |
|
|
|
This method initializes the annotator, creates a mask for the specified region, extracts tracks |
|
only from the masked area, and updates tracking information. Objects outside the region are ignored. |
|
|
|
Args: |
|
im0 (numpy.ndarray): The input image or frame to be processed. |
|
|
|
Returns: |
|
(numpy.ndarray): The processed image with tracking id and bounding boxes annotations. |
|
|
|
Examples: |
|
>>> tracker = TrackZone() |
|
>>> frame = cv2.imread("path/to/image.jpg") |
|
>>> tracker.trackzone(frame) |
|
""" |
|
self.annotator = Annotator(im0, line_width=self.line_width) |
|
|
|
masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255)) |
|
self.extract_tracks(masked_frame) |
|
|
|
cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2) |
|
|
|
|
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss): |
|
self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True)) |
|
|
|
self.display_output(im0) |
|
|
|
return im0 |
|
|