|
|
|
|
|
from itertools import cycle |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas |
|
from matplotlib.figure import Figure |
|
|
|
from ultralytics.solutions.solutions import BaseSolution |
|
|
|
|
|
class Analytics(BaseSolution): |
|
""" |
|
A class for creating and updating various types of charts for visual analytics. |
|
|
|
This class extends BaseSolution to provide functionality for generating line, bar, pie, and area charts |
|
based on object detection and tracking data. |
|
|
|
Attributes: |
|
type (str): The type of analytics chart to generate ('line', 'bar', 'pie', or 'area'). |
|
x_label (str): Label for the x-axis. |
|
y_label (str): Label for the y-axis. |
|
bg_color (str): Background color of the chart frame. |
|
fg_color (str): Foreground color of the chart frame. |
|
title (str): Title of the chart window. |
|
max_points (int): Maximum number of data points to display on the chart. |
|
fontsize (int): Font size for text display. |
|
color_cycle (cycle): Cyclic iterator for chart colors. |
|
total_counts (int): Total count of detected objects (used for line charts). |
|
clswise_count (Dict[str, int]): Dictionary for class-wise object counts. |
|
fig (Figure): Matplotlib figure object for the chart. |
|
ax (Axes): Matplotlib axes object for the chart. |
|
canvas (FigureCanvas): Canvas for rendering the chart. |
|
|
|
Methods: |
|
process_data: Processes image data and updates the chart. |
|
update_graph: Updates the chart with new data points. |
|
|
|
Examples: |
|
>>> analytics = Analytics(analytics_type="line") |
|
>>> frame = cv2.imread("image.jpg") |
|
>>> processed_frame = analytics.process_data(frame, frame_number=1) |
|
>>> cv2.imshow("Analytics", processed_frame) |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
"""Initialize Analytics class with various chart types for visual data representation.""" |
|
super().__init__(**kwargs) |
|
|
|
self.type = self.CFG["analytics_type"] |
|
self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#" |
|
self.y_label = "Total Counts" |
|
|
|
|
|
self.bg_color = "#F3F3F3" |
|
self.fg_color = "#111E68" |
|
self.title = "Ultralytics Solutions" |
|
self.max_points = 45 |
|
self.fontsize = 25 |
|
figsize = (19.2, 10.8) |
|
self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"]) |
|
|
|
self.total_counts = 0 |
|
self.clswise_count = {} |
|
|
|
|
|
if self.type in {"line", "area"}: |
|
self.lines = {} |
|
self.fig = Figure(facecolor=self.bg_color, figsize=figsize) |
|
self.canvas = FigureCanvas(self.fig) |
|
self.ax = self.fig.add_subplot(111, facecolor=self.bg_color) |
|
if self.type == "line": |
|
(self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width) |
|
elif self.type in {"bar", "pie"}: |
|
|
|
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color) |
|
self.canvas = FigureCanvas(self.fig) |
|
self.ax.set_facecolor(self.bg_color) |
|
self.color_mapping = {} |
|
|
|
if self.type == "pie": |
|
self.ax.axis("equal") |
|
|
|
def process_data(self, im0, frame_number): |
|
""" |
|
Processes image data and runs object tracking to update analytics charts. |
|
|
|
Args: |
|
im0 (np.ndarray): Input image for processing. |
|
frame_number (int): Video frame number for plotting the data. |
|
|
|
Returns: |
|
(np.ndarray): Processed image with updated analytics chart. |
|
|
|
Raises: |
|
ModuleNotFoundError: If an unsupported chart type is specified. |
|
|
|
Examples: |
|
>>> analytics = Analytics(analytics_type="line") |
|
>>> frame = np.zeros((480, 640, 3), dtype=np.uint8) |
|
>>> processed_frame = analytics.process_data(frame, frame_number=1) |
|
""" |
|
self.extract_tracks(im0) |
|
|
|
if self.type == "line": |
|
for _ in self.boxes: |
|
self.total_counts += 1 |
|
im0 = self.update_graph(frame_number=frame_number) |
|
self.total_counts = 0 |
|
elif self.type in {"pie", "bar", "area"}: |
|
self.clswise_count = {} |
|
for box, cls in zip(self.boxes, self.clss): |
|
if self.names[int(cls)] in self.clswise_count: |
|
self.clswise_count[self.names[int(cls)]] += 1 |
|
else: |
|
self.clswise_count[self.names[int(cls)]] = 1 |
|
im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type) |
|
else: |
|
raise ModuleNotFoundError(f"{self.type} chart is not supported ❌") |
|
return im0 |
|
|
|
def update_graph(self, frame_number, count_dict=None, plot="line"): |
|
""" |
|
Updates the graph with new data for single or multiple classes. |
|
|
|
Args: |
|
frame_number (int): The current frame number. |
|
count_dict (Dict[str, int] | None): Dictionary with class names as keys and counts as values for multiple |
|
classes. If None, updates a single line graph. |
|
plot (str): Type of the plot. Options are 'line', 'bar', 'pie', or 'area'. |
|
|
|
Returns: |
|
(np.ndarray): Updated image containing the graph. |
|
|
|
Examples: |
|
>>> analytics = Analytics() |
|
>>> frame_number = 10 |
|
>>> count_dict = {"person": 5, "car": 3} |
|
>>> updated_image = analytics.update_graph(frame_number, count_dict, plot="bar") |
|
""" |
|
if count_dict is None: |
|
|
|
x_data = np.append(self.line.get_xdata(), float(frame_number)) |
|
y_data = np.append(self.line.get_ydata(), float(self.total_counts)) |
|
|
|
if len(x_data) > self.max_points: |
|
x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :] |
|
|
|
self.line.set_data(x_data, y_data) |
|
self.line.set_label("Counts") |
|
self.line.set_color("#7b0068") |
|
self.line.set_marker("*") |
|
self.line.set_markersize(self.line_width * 5) |
|
else: |
|
labels = list(count_dict.keys()) |
|
counts = list(count_dict.values()) |
|
if plot == "area": |
|
color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"]) |
|
|
|
x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([]) |
|
y_data_dict = {key: np.array([]) for key in count_dict.keys()} |
|
if self.ax.lines: |
|
for line, key in zip(self.ax.lines, count_dict.keys()): |
|
y_data_dict[key] = line.get_ydata() |
|
|
|
x_data = np.append(x_data, float(frame_number)) |
|
max_length = len(x_data) |
|
for key in count_dict.keys(): |
|
y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key])) |
|
if len(y_data_dict[key]) < max_length: |
|
y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key]))) |
|
if len(x_data) > self.max_points: |
|
x_data = x_data[1:] |
|
for key in count_dict.keys(): |
|
y_data_dict[key] = y_data_dict[key][1:] |
|
|
|
self.ax.clear() |
|
for key, y_data in y_data_dict.items(): |
|
color = next(color_cycle) |
|
self.ax.fill_between(x_data, y_data, color=color, alpha=0.7) |
|
self.ax.plot( |
|
x_data, |
|
y_data, |
|
color=color, |
|
linewidth=self.line_width, |
|
marker="o", |
|
markersize=self.line_width * 5, |
|
label=f"{key} Data Points", |
|
) |
|
if plot == "bar": |
|
self.ax.clear() |
|
for label in labels: |
|
if label not in self.color_mapping: |
|
self.color_mapping[label] = next(self.color_cycle) |
|
colors = [self.color_mapping[label] for label in labels] |
|
bars = self.ax.bar(labels, counts, color=colors) |
|
for bar, count in zip(bars, counts): |
|
self.ax.text( |
|
bar.get_x() + bar.get_width() / 2, |
|
bar.get_height(), |
|
str(count), |
|
ha="center", |
|
va="bottom", |
|
color=self.fg_color, |
|
) |
|
|
|
for bar, label in zip(bars, labels): |
|
bar.set_label(label) |
|
self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color) |
|
if plot == "pie": |
|
total = sum(counts) |
|
percentages = [size / total * 100 for size in counts] |
|
start_angle = 90 |
|
self.ax.clear() |
|
|
|
|
|
wedges, autotexts = self.ax.pie( |
|
counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None |
|
) |
|
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)] |
|
|
|
|
|
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) |
|
self.fig.subplots_adjust(left=0.1, right=0.75) |
|
|
|
|
|
self.ax.set_facecolor("#f0f0f0") |
|
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) |
|
self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3) |
|
self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3) |
|
|
|
|
|
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color) |
|
for text in legend.get_texts(): |
|
text.set_color(self.fg_color) |
|
|
|
|
|
self.ax.relim() |
|
self.ax.autoscale_view() |
|
self.canvas.draw() |
|
im0 = np.array(self.canvas.renderer.buffer_rgba()) |
|
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR) |
|
self.display_output(im0) |
|
|
|
return im0 |
|
|