|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ultralytics.data import build_dataloader, build_yolo_dataset, converter |
|
from ultralytics.engine.validator import BaseValidator |
|
from ultralytics.utils import LOGGER, ops |
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou |
|
from ultralytics.utils.plotting import output_to_target, plot_images |
|
|
|
|
|
class DetectionValidator(BaseValidator): |
|
""" |
|
A class extending the BaseValidator class for validation based on a detection model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
|
|
args = dict(model="yolo11n.pt", data="coco8.yaml") |
|
validator = DetectionValidator(args=args) |
|
validator() |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initialize detection model with necessary variables and settings.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.nt_per_class = None |
|
self.nt_per_image = None |
|
self.is_coco = False |
|
self.is_lvis = False |
|
self.class_map = None |
|
self.args.task = "detect" |
|
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot) |
|
self.iouv = torch.linspace(0.5, 0.95, 10) |
|
self.niou = self.iouv.numel() |
|
self.lb = [] |
|
if self.args.save_hybrid: |
|
LOGGER.warning( |
|
"WARNING ⚠️ 'save_hybrid=True' will append ground truth to predictions for autolabelling.\n" |
|
"WARNING ⚠️ 'save_hybrid=True' will cause incorrect mAP.\n" |
|
) |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses batch of images for YOLO training.""" |
|
batch["img"] = batch["img"].to(self.device, non_blocking=True) |
|
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255 |
|
for k in ["batch_idx", "cls", "bboxes"]: |
|
batch[k] = batch[k].to(self.device) |
|
|
|
if self.args.save_hybrid: |
|
height, width = batch["img"].shape[2:] |
|
nb = len(batch["img"]) |
|
bboxes = batch["bboxes"] * torch.tensor((width, height, width, height), device=self.device) |
|
self.lb = [ |
|
torch.cat([batch["cls"][batch["batch_idx"] == i], bboxes[batch["batch_idx"] == i]], dim=-1) |
|
for i in range(nb) |
|
] |
|
|
|
return batch |
|
|
|
def init_metrics(self, model): |
|
"""Initialize evaluation metrics for YOLO.""" |
|
val = self.data.get(self.args.split, "") |
|
self.is_coco = ( |
|
isinstance(val, str) |
|
and "coco" in val |
|
and (val.endswith(f"{os.sep}val2017.txt") or val.endswith(f"{os.sep}test-dev2017.txt")) |
|
) |
|
self.is_lvis = isinstance(val, str) and "lvis" in val and not self.is_coco |
|
self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1, len(model.names) + 1)) |
|
self.args.save_json |= self.args.val and (self.is_coco or self.is_lvis) and not self.training |
|
self.names = model.names |
|
self.nc = len(model.names) |
|
self.metrics.names = self.names |
|
self.metrics.plot = self.args.plots |
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf) |
|
self.seen = 0 |
|
self.jdict = [] |
|
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[]) |
|
|
|
def get_desc(self): |
|
"""Return a formatted string summarizing class metrics of YOLO model.""" |
|
return ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)") |
|
|
|
def postprocess(self, preds): |
|
"""Apply Non-maximum suppression to prediction outputs.""" |
|
return ops.non_max_suppression( |
|
preds, |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=True, |
|
agnostic=self.args.single_cls or self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
) |
|
|
|
def _prepare_batch(self, si, batch): |
|
"""Prepares a batch of images and annotations for validation.""" |
|
idx = batch["batch_idx"] == si |
|
cls = batch["cls"][idx].squeeze(-1) |
|
bbox = batch["bboxes"][idx] |
|
ori_shape = batch["ori_shape"][si] |
|
imgsz = batch["img"].shape[2:] |
|
ratio_pad = batch["ratio_pad"][si] |
|
if len(cls): |
|
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] |
|
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) |
|
return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad} |
|
|
|
def _prepare_pred(self, pred, pbatch): |
|
"""Prepares a batch of images and annotations for validation.""" |
|
predn = pred.clone() |
|
ops.scale_boxes( |
|
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"] |
|
) |
|
return predn |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Metrics.""" |
|
for si, pred in enumerate(preds): |
|
self.seen += 1 |
|
npr = len(pred) |
|
stat = dict( |
|
conf=torch.zeros(0, device=self.device), |
|
pred_cls=torch.zeros(0, device=self.device), |
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), |
|
) |
|
pbatch = self._prepare_batch(si, batch) |
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") |
|
nl = len(cls) |
|
stat["target_cls"] = cls |
|
stat["target_img"] = cls.unique() |
|
if npr == 0: |
|
if nl: |
|
for k in self.stats.keys(): |
|
self.stats[k].append(stat[k]) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) |
|
continue |
|
|
|
|
|
if self.args.single_cls: |
|
pred[:, 5] = 0 |
|
predn = self._prepare_pred(pred, pbatch) |
|
stat["conf"] = predn[:, 4] |
|
stat["pred_cls"] = predn[:, 5] |
|
|
|
|
|
if nl: |
|
stat["tp"] = self._process_batch(predn, bbox, cls) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(predn, bbox, cls) |
|
for k in self.stats.keys(): |
|
self.stats[k].append(stat[k]) |
|
|
|
|
|
if self.args.save_json: |
|
self.pred_to_json(predn, batch["im_file"][si]) |
|
if self.args.save_txt: |
|
self.save_one_txt( |
|
predn, |
|
self.args.save_conf, |
|
pbatch["ori_shape"], |
|
self.save_dir / "labels" / f"{Path(batch['im_file'][si]).stem}.txt", |
|
) |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Set final values for metrics speed and confusion matrix.""" |
|
self.metrics.speed = self.speed |
|
self.metrics.confusion_matrix = self.confusion_matrix |
|
|
|
def get_stats(self): |
|
"""Returns metrics statistics and results dictionary.""" |
|
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} |
|
self.nt_per_class = np.bincount(stats["target_cls"].astype(int), minlength=self.nc) |
|
self.nt_per_image = np.bincount(stats["target_img"].astype(int), minlength=self.nc) |
|
stats.pop("target_img", None) |
|
if len(stats) and stats["tp"].any(): |
|
self.metrics.process(**stats) |
|
return self.metrics.results_dict |
|
|
|
def print_results(self): |
|
"""Prints training/validation set metrics per class.""" |
|
pf = "%22s" + "%11i" * 2 + "%11.3g" * len(self.metrics.keys) |
|
LOGGER.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) |
|
if self.nt_per_class.sum() == 0: |
|
LOGGER.warning(f"WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels") |
|
|
|
|
|
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats): |
|
for i, c in enumerate(self.metrics.ap_class_index): |
|
LOGGER.info( |
|
pf % (self.names[c], self.nt_per_image[c], self.nt_per_class[c], *self.metrics.class_result(i)) |
|
) |
|
|
|
if self.args.plots: |
|
for normalize in True, False: |
|
self.confusion_matrix.plot( |
|
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot |
|
) |
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls): |
|
""" |
|
Return correct prediction matrix. |
|
|
|
Args: |
|
detections (torch.Tensor): Tensor of shape (N, 6) representing detections where each detection is |
|
(x1, y1, x2, y2, conf, class). |
|
gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground-truth bounding box coordinates. Each |
|
bounding box is of the format: (x1, y1, x2, y2). |
|
gt_cls (torch.Tensor): Tensor of shape (M,) representing target class indices. |
|
|
|
Returns: |
|
(torch.Tensor): Correct prediction matrix of shape (N, 10) for 10 IoU levels. |
|
|
|
Note: |
|
The function does not return any value directly usable for metrics calculation. Instead, it provides an |
|
intermediate representation used for evaluating predictions against ground truth. |
|
""" |
|
iou = box_iou(gt_bboxes, detections[:, :4]) |
|
return self.match_predictions(detections[:, 5], gt_cls, iou) |
|
|
|
def build_dataset(self, img_path, mode="val", batch=None): |
|
""" |
|
Build YOLO Dataset. |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. |
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. |
|
""" |
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride) |
|
|
|
def get_dataloader(self, dataset_path, batch_size): |
|
"""Construct and return dataloader.""" |
|
dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val") |
|
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plot validation image samples.""" |
|
plot_images( |
|
batch["img"], |
|
batch["batch_idx"], |
|
batch["cls"].squeeze(-1), |
|
batch["bboxes"], |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots predicted bounding boxes on input images and saves the result.""" |
|
plot_images( |
|
batch["img"], |
|
*output_to_target(preds, max_det=self.args.max_det), |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
|
|
def save_one_txt(self, predn, save_conf, shape, file): |
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format.""" |
|
from ultralytics.engine.results import Results |
|
|
|
Results( |
|
np.zeros((shape[0], shape[1]), dtype=np.uint8), |
|
path=None, |
|
names=self.names, |
|
boxes=predn[:, :6], |
|
).save_txt(file, save_conf=save_conf) |
|
|
|
def pred_to_json(self, predn, filename): |
|
"""Serialize YOLO predictions to COCO json format.""" |
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
box = ops.xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(predn.tolist(), box.tolist()): |
|
self.jdict.append( |
|
{ |
|
"image_id": image_id, |
|
"category_id": self.class_map[int(p[5])], |
|
"bbox": [round(x, 3) for x in b], |
|
"score": round(p[4], 5), |
|
} |
|
) |
|
|
|
def eval_json(self, stats): |
|
"""Evaluates YOLO output in JSON format and returns performance statistics.""" |
|
if self.args.save_json and (self.is_coco or self.is_lvis) and len(self.jdict): |
|
pred_json = self.save_dir / "predictions.json" |
|
anno_json = ( |
|
self.data["path"] |
|
/ "annotations" |
|
/ ("instances_val2017.json" if self.is_coco else f"lvis_v1_{self.args.split}.json") |
|
) |
|
pkg = "pycocotools" if self.is_coco else "lvis" |
|
LOGGER.info(f"\nEvaluating {pkg} mAP using {pred_json} and {anno_json}...") |
|
try: |
|
for x in pred_json, anno_json: |
|
assert x.is_file(), f"{x} file not found" |
|
check_requirements("pycocotools>=2.0.6" if self.is_coco else "lvis>=0.5.3") |
|
if self.is_coco: |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
anno = COCO(str(anno_json)) |
|
pred = anno.loadRes(str(pred_json)) |
|
val = COCOeval(anno, pred, "bbox") |
|
else: |
|
from lvis import LVIS, LVISEval |
|
|
|
anno = LVIS(str(anno_json)) |
|
pred = anno._load_json(str(pred_json)) |
|
val = LVISEval(anno, pred, "bbox") |
|
val.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] |
|
val.evaluate() |
|
val.accumulate() |
|
val.summarize() |
|
if self.is_lvis: |
|
val.print_results() |
|
|
|
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = ( |
|
val.stats[:2] if self.is_coco else [val.results["AP50"], val.results["AP"]] |
|
) |
|
except Exception as e: |
|
LOGGER.warning(f"{pkg} unable to run: {e}") |
|
return stats |
|
|