|
|
|
|
|
import math |
|
from typing import Tuple, Type |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
|
|
from ultralytics.nn.modules import MLPBlock |
|
|
|
|
|
class TwoWayTransformer(nn.Module): |
|
""" |
|
A Two-Way Transformer module for simultaneous attention to image and query points. |
|
|
|
This class implements a specialized transformer decoder that attends to an input image using queries with |
|
supplied positional embeddings. It's useful for tasks like object detection, image segmentation, and point |
|
cloud processing. |
|
|
|
Attributes: |
|
depth (int): Number of layers in the transformer. |
|
embedding_dim (int): Channel dimension for input embeddings. |
|
num_heads (int): Number of heads for multihead attention. |
|
mlp_dim (int): Internal channel dimension for the MLP block. |
|
layers (nn.ModuleList): List of TwoWayAttentionBlock layers composing the transformer. |
|
final_attn_token_to_image (Attention): Final attention layer from queries to image. |
|
norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries. |
|
|
|
Methods: |
|
forward: Processes image and point embeddings through the transformer. |
|
|
|
Examples: |
|
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048) |
|
>>> image_embedding = torch.randn(1, 256, 32, 32) |
|
>>> image_pe = torch.randn(1, 256, 32, 32) |
|
>>> point_embedding = torch.randn(1, 100, 256) |
|
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding) |
|
>>> print(output_queries.shape, output_image.shape) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
depth: int, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
) -> None: |
|
""" |
|
Initialize a Two-Way Transformer for simultaneous attention to image and query points. |
|
|
|
Args: |
|
depth (int): Number of layers in the transformer. |
|
embedding_dim (int): Channel dimension for input embeddings. |
|
num_heads (int): Number of heads for multihead attention. Must divide embedding_dim. |
|
mlp_dim (int): Internal channel dimension for the MLP block. |
|
activation (Type[nn.Module]): Activation function to use in the MLP block. |
|
attention_downsample_rate (int): Downsampling rate for attention mechanism. |
|
|
|
Attributes: |
|
depth (int): Number of layers in the transformer. |
|
embedding_dim (int): Channel dimension for input embeddings. |
|
num_heads (int): Number of heads for multihead attention. |
|
mlp_dim (int): Internal channel dimension for the MLP block. |
|
layers (nn.ModuleList): List of TwoWayAttentionBlock layers. |
|
final_attn_token_to_image (Attention): Final attention layer from queries to image. |
|
norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries. |
|
|
|
Examples: |
|
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048) |
|
>>> image_embedding = torch.randn(1, 256, 32, 32) |
|
>>> image_pe = torch.randn(1, 256, 32, 32) |
|
>>> point_embedding = torch.randn(1, 100, 256) |
|
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding) |
|
>>> print(output_queries.shape, output_image.shape) |
|
""" |
|
super().__init__() |
|
self.depth = depth |
|
self.embedding_dim = embedding_dim |
|
self.num_heads = num_heads |
|
self.mlp_dim = mlp_dim |
|
self.layers = nn.ModuleList() |
|
|
|
for i in range(depth): |
|
self.layers.append( |
|
TwoWayAttentionBlock( |
|
embedding_dim=embedding_dim, |
|
num_heads=num_heads, |
|
mlp_dim=mlp_dim, |
|
activation=activation, |
|
attention_downsample_rate=attention_downsample_rate, |
|
skip_first_layer_pe=(i == 0), |
|
) |
|
) |
|
|
|
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) |
|
self.norm_final_attn = nn.LayerNorm(embedding_dim) |
|
|
|
def forward( |
|
self, |
|
image_embedding: Tensor, |
|
image_pe: Tensor, |
|
point_embedding: Tensor, |
|
) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Processes image and point embeddings through the Two-Way Transformer. |
|
|
|
Args: |
|
image_embedding (torch.Tensor): Image to attend to, with shape (B, embedding_dim, H, W). |
|
image_pe (torch.Tensor): Positional encoding to add to the image, with same shape as image_embedding. |
|
point_embedding (torch.Tensor): Embedding to add to query points, with shape (B, N_points, embedding_dim). |
|
|
|
Returns: |
|
(Tuple[torch.Tensor, torch.Tensor]): Processed point_embedding and image_embedding. |
|
|
|
Examples: |
|
>>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048) |
|
>>> image_embedding = torch.randn(1, 256, 32, 32) |
|
>>> image_pe = torch.randn(1, 256, 32, 32) |
|
>>> point_embedding = torch.randn(1, 100, 256) |
|
>>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding) |
|
>>> print(output_queries.shape, output_image.shape) |
|
""" |
|
|
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1) |
|
image_pe = image_pe.flatten(2).permute(0, 2, 1) |
|
|
|
|
|
queries = point_embedding |
|
keys = image_embedding |
|
|
|
|
|
for layer in self.layers: |
|
queries, keys = layer( |
|
queries=queries, |
|
keys=keys, |
|
query_pe=point_embedding, |
|
key_pe=image_pe, |
|
) |
|
|
|
|
|
q = queries + point_embedding |
|
k = keys + image_pe |
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm_final_attn(queries) |
|
|
|
return queries, keys |
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module): |
|
""" |
|
A two-way attention block for simultaneous attention to image and query points. |
|
|
|
This class implements a specialized transformer block with four main layers: self-attention on sparse inputs, |
|
cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense |
|
inputs to sparse inputs. |
|
|
|
Attributes: |
|
self_attn (Attention): Self-attention layer for queries. |
|
norm1 (nn.LayerNorm): Layer normalization after self-attention. |
|
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys. |
|
norm2 (nn.LayerNorm): Layer normalization after token-to-image attention. |
|
mlp (MLPBlock): MLP block for transforming query embeddings. |
|
norm3 (nn.LayerNorm): Layer normalization after MLP block. |
|
norm4 (nn.LayerNorm): Layer normalization after image-to-token attention. |
|
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries. |
|
skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer. |
|
|
|
Methods: |
|
forward: Applies self-attention and cross-attention to queries and keys. |
|
|
|
Examples: |
|
>>> embedding_dim, num_heads = 256, 8 |
|
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads) |
|
>>> queries = torch.randn(1, 100, embedding_dim) |
|
>>> keys = torch.randn(1, 1000, embedding_dim) |
|
>>> query_pe = torch.randn(1, 100, embedding_dim) |
|
>>> key_pe = torch.randn(1, 1000, embedding_dim) |
|
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int = 2048, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
skip_first_layer_pe: bool = False, |
|
) -> None: |
|
""" |
|
Initializes a TwoWayAttentionBlock for simultaneous attention to image and query points. |
|
|
|
This block implements a specialized transformer layer with four main components: self-attention on sparse |
|
inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention |
|
of dense inputs to sparse inputs. |
|
|
|
Args: |
|
embedding_dim (int): Channel dimension of the embeddings. |
|
num_heads (int): Number of attention heads in the attention layers. |
|
mlp_dim (int): Hidden dimension of the MLP block. |
|
activation (Type[nn.Module]): Activation function for the MLP block. |
|
attention_downsample_rate (int): Downsampling rate for the attention mechanism. |
|
skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer. |
|
|
|
Examples: |
|
>>> embedding_dim, num_heads = 256, 8 |
|
>>> block = TwoWayAttentionBlock(embedding_dim, num_heads) |
|
>>> queries = torch.randn(1, 100, embedding_dim) |
|
>>> keys = torch.randn(1, 1000, embedding_dim) |
|
>>> query_pe = torch.randn(1, 100, embedding_dim) |
|
>>> key_pe = torch.randn(1, 1000, embedding_dim) |
|
>>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe) |
|
""" |
|
super().__init__() |
|
self.self_attn = Attention(embedding_dim, num_heads) |
|
self.norm1 = nn.LayerNorm(embedding_dim) |
|
|
|
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) |
|
self.norm2 = nn.LayerNorm(embedding_dim) |
|
|
|
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) |
|
self.norm3 = nn.LayerNorm(embedding_dim) |
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim) |
|
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) |
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe |
|
|
|
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: |
|
"""Applies two-way attention to process query and key embeddings in a transformer block.""" |
|
|
|
if self.skip_first_layer_pe: |
|
queries = self.self_attn(q=queries, k=queries, v=queries) |
|
else: |
|
q = queries + query_pe |
|
attn_out = self.self_attn(q=q, k=q, v=queries) |
|
queries = queries + attn_out |
|
queries = self.norm1(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm2(queries) |
|
|
|
|
|
mlp_out = self.mlp(queries) |
|
queries = queries + mlp_out |
|
queries = self.norm3(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) |
|
keys = keys + attn_out |
|
keys = self.norm4(keys) |
|
|
|
return queries, keys |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
An attention layer with downscaling capability for embedding size after projection. |
|
|
|
This class implements a multi-head attention mechanism with the option to downsample the internal |
|
dimension of queries, keys, and values. |
|
|
|
Attributes: |
|
embedding_dim (int): Dimensionality of input embeddings. |
|
kv_in_dim (int): Dimensionality of key and value inputs. |
|
internal_dim (int): Internal dimension after downsampling. |
|
num_heads (int): Number of attention heads. |
|
q_proj (nn.Linear): Linear projection for queries. |
|
k_proj (nn.Linear): Linear projection for keys. |
|
v_proj (nn.Linear): Linear projection for values. |
|
out_proj (nn.Linear): Linear projection for output. |
|
|
|
Methods: |
|
_separate_heads: Separates input tensor into attention heads. |
|
_recombine_heads: Recombines separated attention heads. |
|
forward: Computes attention output for given query, key, and value tensors. |
|
|
|
Examples: |
|
>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2) |
|
>>> q = torch.randn(1, 100, 256) |
|
>>> k = v = torch.randn(1, 50, 256) |
|
>>> output = attn(q, k, v) |
|
>>> print(output.shape) |
|
torch.Size([1, 100, 256]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
downsample_rate: int = 1, |
|
kv_in_dim: int = None, |
|
) -> None: |
|
""" |
|
Initializes the Attention module with specified dimensions and settings. |
|
|
|
This class implements a multi-head attention mechanism with optional downsampling of the internal |
|
dimension for queries, keys, and values. |
|
|
|
Args: |
|
embedding_dim (int): Dimensionality of input embeddings. |
|
num_heads (int): Number of attention heads. |
|
downsample_rate (int): Factor by which internal dimensions are downsampled. Defaults to 1. |
|
kv_in_dim (int | None): Dimensionality of key and value inputs. If None, uses embedding_dim. |
|
|
|
Raises: |
|
AssertionError: If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate). |
|
|
|
Examples: |
|
>>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2) |
|
>>> q = torch.randn(1, 100, 256) |
|
>>> k = v = torch.randn(1, 50, 256) |
|
>>> output = attn(q, k, v) |
|
>>> print(output.shape) |
|
torch.Size([1, 100, 256]) |
|
""" |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim |
|
self.internal_dim = embedding_dim // downsample_rate |
|
self.num_heads = num_heads |
|
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." |
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim) |
|
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) |
|
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) |
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim) |
|
|
|
@staticmethod |
|
def _separate_heads(x: Tensor, num_heads: int) -> Tensor: |
|
"""Separates the input tensor into the specified number of attention heads.""" |
|
b, n, c = x.shape |
|
x = x.reshape(b, n, num_heads, c // num_heads) |
|
return x.transpose(1, 2) |
|
|
|
@staticmethod |
|
def _recombine_heads(x: Tensor) -> Tensor: |
|
"""Recombines separated attention heads into a single tensor.""" |
|
b, n_heads, n_tokens, c_per_head = x.shape |
|
x = x.transpose(1, 2) |
|
return x.reshape(b, n_tokens, n_heads * c_per_head) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: |
|
"""Applies multi-head attention to query, key, and value tensors with optional downsampling.""" |
|
|
|
q = self.q_proj(q) |
|
k = self.k_proj(k) |
|
v = self.v_proj(v) |
|
|
|
|
|
q = self._separate_heads(q, self.num_heads) |
|
k = self._separate_heads(k, self.num_heads) |
|
v = self._separate_heads(v, self.num_heads) |
|
|
|
|
|
_, _, _, c_per_head = q.shape |
|
attn = q @ k.permute(0, 1, 3, 2) |
|
attn = attn / math.sqrt(c_per_head) |
|
attn = torch.softmax(attn, dim=-1) |
|
|
|
|
|
out = attn @ v |
|
out = self._recombine_heads(out) |
|
return self.out_proj(out) |
|
|