|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
from ultralytics.nn.modules import LayerNorm2d |
|
from ultralytics.utils.instance import to_2tuple |
|
|
|
|
|
class Conv2d_BN(torch.nn.Sequential): |
|
""" |
|
A sequential container that performs 2D convolution followed by batch normalization. |
|
|
|
Attributes: |
|
c (torch.nn.Conv2d): 2D convolution layer. |
|
1 (torch.nn.BatchNorm2d): Batch normalization layer. |
|
|
|
Methods: |
|
__init__: Initializes the Conv2d_BN with specified parameters. |
|
|
|
Args: |
|
a (int): Number of input channels. |
|
b (int): Number of output channels. |
|
ks (int): Kernel size for the convolution. Defaults to 1. |
|
stride (int): Stride for the convolution. Defaults to 1. |
|
pad (int): Padding for the convolution. Defaults to 0. |
|
dilation (int): Dilation factor for the convolution. Defaults to 1. |
|
groups (int): Number of groups for the convolution. Defaults to 1. |
|
bn_weight_init (float): Initial value for batch normalization weight. Defaults to 1. |
|
|
|
Examples: |
|
>>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1) |
|
>>> input_tensor = torch.randn(1, 3, 224, 224) |
|
>>> output = conv_bn(input_tensor) |
|
>>> print(output.shape) |
|
""" |
|
|
|
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): |
|
"""Initializes a sequential container with 2D convolution followed by batch normalization.""" |
|
super().__init__() |
|
self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False)) |
|
bn = torch.nn.BatchNorm2d(b) |
|
torch.nn.init.constant_(bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(bn.bias, 0) |
|
self.add_module("bn", bn) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Embeds images into patches and projects them into a specified embedding dimension. |
|
|
|
Attributes: |
|
patches_resolution (Tuple[int, int]): Resolution of the patches after embedding. |
|
num_patches (int): Total number of patches. |
|
in_chans (int): Number of input channels. |
|
embed_dim (int): Dimension of the embedding. |
|
seq (nn.Sequential): Sequence of convolutional and activation layers for patch embedding. |
|
|
|
Methods: |
|
forward: Processes the input tensor through the patch embedding sequence. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU) |
|
>>> x = torch.randn(1, 3, 224, 224) |
|
>>> output = patch_embed(x) |
|
>>> print(output.shape) |
|
""" |
|
|
|
def __init__(self, in_chans, embed_dim, resolution, activation): |
|
"""Initializes patch embedding with convolutional layers for image-to-patch conversion and projection.""" |
|
super().__init__() |
|
img_size: Tuple[int, int] = to_2tuple(resolution) |
|
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) |
|
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1] |
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
n = embed_dim |
|
self.seq = nn.Sequential( |
|
Conv2d_BN(in_chans, n // 2, 3, 2, 1), |
|
activation(), |
|
Conv2d_BN(n // 2, n, 3, 2, 1), |
|
) |
|
|
|
def forward(self, x): |
|
"""Processes input tensor through patch embedding sequence, converting images to patch embeddings.""" |
|
return self.seq(x) |
|
|
|
|
|
class MBConv(nn.Module): |
|
""" |
|
Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture. |
|
|
|
Attributes: |
|
in_chans (int): Number of input channels. |
|
hidden_chans (int): Number of hidden channels. |
|
out_chans (int): Number of output channels. |
|
conv1 (Conv2d_BN): First convolutional layer. |
|
act1 (nn.Module): First activation function. |
|
conv2 (Conv2d_BN): Depthwise convolutional layer. |
|
act2 (nn.Module): Second activation function. |
|
conv3 (Conv2d_BN): Final convolutional layer. |
|
act3 (nn.Module): Third activation function. |
|
drop_path (nn.Module): Drop path layer (Identity for inference). |
|
|
|
Methods: |
|
forward: Performs the forward pass through the MBConv layer. |
|
|
|
Examples: |
|
>>> in_chans, out_chans = 32, 64 |
|
>>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1) |
|
>>> x = torch.randn(1, in_chans, 56, 56) |
|
>>> output = mbconv(x) |
|
>>> print(output.shape) |
|
torch.Size([1, 64, 56, 56]) |
|
""" |
|
|
|
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): |
|
"""Initializes the MBConv layer with specified input/output channels, expansion ratio, and activation.""" |
|
super().__init__() |
|
self.in_chans = in_chans |
|
self.hidden_chans = int(in_chans * expand_ratio) |
|
self.out_chans = out_chans |
|
|
|
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) |
|
self.act1 = activation() |
|
|
|
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans) |
|
self.act2 = activation() |
|
|
|
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) |
|
self.act3 = activation() |
|
|
|
|
|
|
|
self.drop_path = nn.Identity() |
|
|
|
def forward(self, x): |
|
"""Implements the forward pass of MBConv, applying convolutions and skip connection.""" |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.act1(x) |
|
x = self.conv2(x) |
|
x = self.act2(x) |
|
x = self.conv3(x) |
|
x = self.drop_path(x) |
|
x += shortcut |
|
return self.act3(x) |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" |
|
Merges neighboring patches in the feature map and projects to a new dimension. |
|
|
|
This class implements a patch merging operation that combines spatial information and adjusts the feature |
|
dimension. It uses a series of convolutional layers with batch normalization to achieve this. |
|
|
|
Attributes: |
|
input_resolution (Tuple[int, int]): The input resolution (height, width) of the feature map. |
|
dim (int): The input dimension of the feature map. |
|
out_dim (int): The output dimension after merging and projection. |
|
act (nn.Module): The activation function used between convolutions. |
|
conv1 (Conv2d_BN): The first convolutional layer for dimension projection. |
|
conv2 (Conv2d_BN): The second convolutional layer for spatial merging. |
|
conv3 (Conv2d_BN): The third convolutional layer for final projection. |
|
|
|
Methods: |
|
forward: Applies the patch merging operation to the input tensor. |
|
|
|
Examples: |
|
>>> input_resolution = (56, 56) |
|
>>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU) |
|
>>> x = torch.randn(4, 64, 56, 56) |
|
>>> output = patch_merging(x) |
|
>>> print(output.shape) |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, out_dim, activation): |
|
"""Initializes the PatchMerging module for merging and projecting neighboring patches in feature maps.""" |
|
super().__init__() |
|
|
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.out_dim = out_dim |
|
self.act = activation() |
|
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) |
|
stride_c = 1 if out_dim in {320, 448, 576} else 2 |
|
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) |
|
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
"""Applies patch merging and dimension projection to the input feature map.""" |
|
if x.ndim == 3: |
|
H, W = self.input_resolution |
|
B = len(x) |
|
|
|
x = x.view(B, H, W, -1).permute(0, 3, 1, 2) |
|
|
|
x = self.conv1(x) |
|
x = self.act(x) |
|
|
|
x = self.conv2(x) |
|
x = self.act(x) |
|
x = self.conv3(x) |
|
return x.flatten(2).transpose(1, 2) |
|
|
|
|
|
class ConvLayer(nn.Module): |
|
""" |
|
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv). |
|
|
|
This layer optionally applies downsample operations to the output and supports gradient checkpointing. |
|
|
|
Attributes: |
|
dim (int): Dimensionality of the input and output. |
|
input_resolution (Tuple[int, int]): Resolution of the input image. |
|
depth (int): Number of MBConv layers in the block. |
|
use_checkpoint (bool): Whether to use gradient checkpointing to save memory. |
|
blocks (nn.ModuleList): List of MBConv layers. |
|
downsample (Optional[Callable]): Function for downsampling the output. |
|
|
|
Methods: |
|
forward: Processes the input through the convolutional layers. |
|
|
|
Examples: |
|
>>> input_tensor = torch.randn(1, 64, 56, 56) |
|
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU) |
|
>>> output = conv_layer(input_tensor) |
|
>>> print(output.shape) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
activation, |
|
drop_path=0.0, |
|
downsample=None, |
|
use_checkpoint=False, |
|
out_dim=None, |
|
conv_expand_ratio=4.0, |
|
): |
|
""" |
|
Initializes the ConvLayer with the given dimensions and settings. |
|
|
|
This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and |
|
optionally applies downsampling to the output. |
|
|
|
Args: |
|
dim (int): The dimensionality of the input and output. |
|
input_resolution (Tuple[int, int]): The resolution of the input image. |
|
depth (int): The number of MBConv layers in the block. |
|
activation (Callable): Activation function applied after each convolution. |
|
drop_path (float | List[float]): Drop path rate. Single float or a list of floats for each MBConv. |
|
downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling. |
|
use_checkpoint (bool): Whether to use gradient checkpointing to save memory. |
|
out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`. |
|
conv_expand_ratio (float): Expansion ratio for the MBConv layers. |
|
|
|
Examples: |
|
>>> input_tensor = torch.randn(1, 64, 56, 56) |
|
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU) |
|
>>> output = conv_layer(input_tensor) |
|
>>> print(output.shape) |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
MBConv( |
|
dim, |
|
dim, |
|
conv_expand_ratio, |
|
activation, |
|
drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
self.downsample = ( |
|
None |
|
if downsample is None |
|
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation) |
|
) |
|
|
|
def forward(self, x): |
|
"""Processes input through convolutional layers, applying MBConv blocks and optional downsampling.""" |
|
for blk in self.blocks: |
|
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x) |
|
return x if self.downsample is None else self.downsample(x) |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" |
|
Multi-layer Perceptron (MLP) module for transformer architectures. |
|
|
|
This module applies layer normalization, two fully-connected layers with an activation function in between, |
|
and dropout. It is commonly used in transformer-based architectures. |
|
|
|
Attributes: |
|
norm (nn.LayerNorm): Layer normalization applied to the input. |
|
fc1 (nn.Linear): First fully-connected layer. |
|
fc2 (nn.Linear): Second fully-connected layer. |
|
act (nn.Module): Activation function applied after the first fully-connected layer. |
|
drop (nn.Dropout): Dropout layer applied after the activation function. |
|
|
|
Methods: |
|
forward: Applies the MLP operations on the input tensor. |
|
|
|
Examples: |
|
>>> import torch |
|
>>> from torch import nn |
|
>>> mlp = Mlp(in_features=256, hidden_features=512, out_features=256, act_layer=nn.GELU, drop=0.1) |
|
>>> x = torch.randn(32, 100, 256) |
|
>>> output = mlp(x) |
|
>>> print(output.shape) |
|
torch.Size([32, 100, 256]) |
|
""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): |
|
"""Initializes a multi-layer perceptron with configurable input, hidden, and output dimensions.""" |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.norm = nn.LayerNorm(in_features) |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.act = act_layer() |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
"""Applies MLP operations: layer norm, FC layers, activation, and dropout to the input tensor.""" |
|
x = self.norm(x) |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
return self.drop(x) |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
""" |
|
Multi-head attention module with spatial awareness and trainable attention biases. |
|
|
|
This module implements a multi-head attention mechanism with support for spatial awareness, applying |
|
attention biases based on spatial resolution. It includes trainable attention biases for each unique |
|
offset between spatial positions in the resolution grid. |
|
|
|
Attributes: |
|
num_heads (int): Number of attention heads. |
|
scale (float): Scaling factor for attention scores. |
|
key_dim (int): Dimensionality of the keys and queries. |
|
nh_kd (int): Product of num_heads and key_dim. |
|
d (int): Dimensionality of the value vectors. |
|
dh (int): Product of d and num_heads. |
|
attn_ratio (float): Attention ratio affecting the dimensions of the value vectors. |
|
norm (nn.LayerNorm): Layer normalization applied to input. |
|
qkv (nn.Linear): Linear layer for computing query, key, and value projections. |
|
proj (nn.Linear): Linear layer for final projection. |
|
attention_biases (nn.Parameter): Learnable attention biases. |
|
attention_bias_idxs (Tensor): Indices for attention biases. |
|
ab (Tensor): Cached attention biases for inference, deleted during training. |
|
|
|
Methods: |
|
train: Sets the module in training mode and handles the 'ab' attribute. |
|
forward: Performs the forward pass of the attention mechanism. |
|
|
|
Examples: |
|
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14)) |
|
>>> x = torch.randn(1, 196, 256) |
|
>>> output = attn(x) |
|
>>> print(output.shape) |
|
torch.Size([1, 196, 256]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
key_dim, |
|
num_heads=8, |
|
attn_ratio=4, |
|
resolution=(14, 14), |
|
): |
|
""" |
|
Initializes the Attention module for multi-head attention with spatial awareness. |
|
|
|
This module implements a multi-head attention mechanism with support for spatial awareness, applying |
|
attention biases based on spatial resolution. It includes trainable attention biases for each unique |
|
offset between spatial positions in the resolution grid. |
|
|
|
Args: |
|
dim (int): The dimensionality of the input and output. |
|
key_dim (int): The dimensionality of the keys and queries. |
|
num_heads (int): Number of attention heads. Default is 8. |
|
attn_ratio (float): Attention ratio, affecting the dimensions of the value vectors. Default is 4. |
|
resolution (Tuple[int, int]): Spatial resolution of the input feature map. Default is (14, 14). |
|
|
|
Raises: |
|
AssertionError: If 'resolution' is not a tuple of length 2. |
|
|
|
Examples: |
|
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14)) |
|
>>> x = torch.randn(1, 196, 256) |
|
>>> output = attn(x) |
|
>>> print(output.shape) |
|
torch.Size([1, 196, 256]) |
|
""" |
|
super().__init__() |
|
|
|
assert isinstance(resolution, tuple) and len(resolution) == 2, "'resolution' argument not tuple of length 2" |
|
self.num_heads = num_heads |
|
self.scale = key_dim**-0.5 |
|
self.key_dim = key_dim |
|
self.nh_kd = nh_kd = key_dim * num_heads |
|
self.d = int(attn_ratio * key_dim) |
|
self.dh = int(attn_ratio * key_dim) * num_heads |
|
self.attn_ratio = attn_ratio |
|
h = self.dh + nh_kd * 2 |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
self.qkv = nn.Linear(dim, h) |
|
self.proj = nn.Linear(self.dh, dim) |
|
|
|
points = list(itertools.product(range(resolution[0]), range(resolution[1]))) |
|
N = len(points) |
|
attention_offsets = {} |
|
idxs = [] |
|
for p1 in points: |
|
for p2 in points: |
|
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) |
|
if offset not in attention_offsets: |
|
attention_offsets[offset] = len(attention_offsets) |
|
idxs.append(attention_offsets[offset]) |
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) |
|
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False) |
|
|
|
@torch.no_grad() |
|
def train(self, mode=True): |
|
"""Performs multi-head attention with spatial awareness and trainable attention biases.""" |
|
super().train(mode) |
|
if mode and hasattr(self, "ab"): |
|
del self.ab |
|
else: |
|
self.ab = self.attention_biases[:, self.attention_bias_idxs] |
|
|
|
def forward(self, x): |
|
"""Applies multi-head attention with spatial awareness and trainable attention biases.""" |
|
B, N, _ = x.shape |
|
|
|
|
|
x = self.norm(x) |
|
|
|
qkv = self.qkv(x) |
|
|
|
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3) |
|
|
|
q = q.permute(0, 2, 1, 3) |
|
k = k.permute(0, 2, 1, 3) |
|
v = v.permute(0, 2, 1, 3) |
|
self.ab = self.ab.to(self.attention_biases.device) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale + ( |
|
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab |
|
) |
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) |
|
return self.proj(x) |
|
|
|
|
|
class TinyViTBlock(nn.Module): |
|
""" |
|
TinyViT Block that applies self-attention and a local convolution to the input. |
|
|
|
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with |
|
local convolutions to process input features efficiently. |
|
|
|
Attributes: |
|
dim (int): The dimensionality of the input and output. |
|
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Size of the attention window. |
|
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. |
|
drop_path (nn.Module): Stochastic depth layer, identity function during inference. |
|
attn (Attention): Self-attention module. |
|
mlp (Mlp): Multi-layer perceptron module. |
|
local_conv (Conv2d_BN): Depth-wise local convolution layer. |
|
|
|
Methods: |
|
forward: Processes the input through the TinyViT block. |
|
extra_repr: Returns a string with extra information about the block's parameters. |
|
|
|
Examples: |
|
>>> input_tensor = torch.randn(1, 196, 192) |
|
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3) |
|
>>> output = block(input_tensor) |
|
>>> print(output.shape) |
|
torch.Size([1, 196, 192]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4.0, |
|
drop=0.0, |
|
drop_path=0.0, |
|
local_conv_size=3, |
|
activation=nn.GELU, |
|
): |
|
""" |
|
Initializes a TinyViT block with self-attention and local convolution. |
|
|
|
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with |
|
local convolutions to process input features efficiently. |
|
|
|
Args: |
|
dim (int): Dimensionality of the input and output features. |
|
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width). |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Size of the attention window. Must be greater than 0. |
|
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. |
|
drop (float): Dropout rate. |
|
drop_path (float): Stochastic depth rate. |
|
local_conv_size (int): Kernel size of the local convolution. |
|
activation (torch.nn.Module): Activation function for MLP. |
|
|
|
Raises: |
|
AssertionError: If window_size is not greater than 0. |
|
AssertionError: If dim is not divisible by num_heads. |
|
|
|
Examples: |
|
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3) |
|
>>> input_tensor = torch.randn(1, 196, 192) |
|
>>> output = block(input_tensor) |
|
>>> print(output.shape) |
|
torch.Size([1, 196, 192]) |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
assert window_size > 0, "window_size must be greater than 0" |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
|
|
self.drop_path = nn.Identity() |
|
|
|
assert dim % num_heads == 0, "dim must be divisible by num_heads" |
|
head_dim = dim // num_heads |
|
|
|
window_resolution = (window_size, window_size) |
|
self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) |
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
mlp_activation = activation |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop) |
|
|
|
pad = local_conv_size // 2 |
|
self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) |
|
|
|
def forward(self, x): |
|
"""Applies self-attention, local convolution, and MLP operations to the input tensor.""" |
|
h, w = self.input_resolution |
|
b, hw, c = x.shape |
|
assert hw == h * w, "input feature has wrong size" |
|
res_x = x |
|
if h == self.window_size and w == self.window_size: |
|
x = self.attn(x) |
|
else: |
|
x = x.view(b, h, w, c) |
|
pad_b = (self.window_size - h % self.window_size) % self.window_size |
|
pad_r = (self.window_size - w % self.window_size) % self.window_size |
|
padding = pad_b > 0 or pad_r > 0 |
|
if padding: |
|
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) |
|
|
|
pH, pW = h + pad_b, w + pad_r |
|
nH = pH // self.window_size |
|
nW = pW // self.window_size |
|
|
|
|
|
x = ( |
|
x.view(b, nH, self.window_size, nW, self.window_size, c) |
|
.transpose(2, 3) |
|
.reshape(b * nH * nW, self.window_size * self.window_size, c) |
|
) |
|
x = self.attn(x) |
|
|
|
|
|
x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c) |
|
if padding: |
|
x = x[:, :h, :w].contiguous() |
|
|
|
x = x.view(b, hw, c) |
|
|
|
x = res_x + self.drop_path(x) |
|
x = x.transpose(1, 2).reshape(b, c, h, w) |
|
x = self.local_conv(x) |
|
x = x.view(b, c, hw).transpose(1, 2) |
|
|
|
return x + self.drop_path(self.mlp(x)) |
|
|
|
def extra_repr(self) -> str: |
|
""" |
|
Returns a string representation of the TinyViTBlock's parameters. |
|
|
|
This method provides a formatted string containing key information about the TinyViTBlock, including its |
|
dimension, input resolution, number of attention heads, window size, and MLP ratio. |
|
|
|
Returns: |
|
(str): A formatted string containing the block's parameters. |
|
|
|
Examples: |
|
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0) |
|
>>> print(block.extra_repr()) |
|
dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0 |
|
""" |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " |
|
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" |
|
) |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" |
|
A basic TinyViT layer for one stage in a TinyViT architecture. |
|
|
|
This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks |
|
and an optional downsampling operation. |
|
|
|
Attributes: |
|
dim (int): The dimensionality of the input and output features. |
|
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map. |
|
depth (int): Number of TinyViT blocks in this layer. |
|
use_checkpoint (bool): Whether to use gradient checkpointing to save memory. |
|
blocks (nn.ModuleList): List of TinyViT blocks that make up this layer. |
|
downsample (nn.Module | None): Downsample layer at the end of the layer, if specified. |
|
|
|
Methods: |
|
forward: Processes the input through the layer's blocks and optional downsampling. |
|
extra_repr: Returns a string with the layer's parameters for printing. |
|
|
|
Examples: |
|
>>> input_tensor = torch.randn(1, 3136, 192) |
|
>>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7) |
|
>>> output = layer(input_tensor) |
|
>>> print(output.shape) |
|
torch.Size([1, 784, 384]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
mlp_ratio=4.0, |
|
drop=0.0, |
|
drop_path=0.0, |
|
downsample=None, |
|
use_checkpoint=False, |
|
local_conv_size=3, |
|
activation=nn.GELU, |
|
out_dim=None, |
|
): |
|
""" |
|
Initializes a BasicLayer in the TinyViT architecture. |
|
|
|
This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to |
|
process feature maps at a specific resolution and dimensionality within the TinyViT model. |
|
|
|
Args: |
|
dim (int): Dimensionality of the input and output features. |
|
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width). |
|
depth (int): Number of TinyViT blocks in this layer. |
|
num_heads (int): Number of attention heads in each TinyViT block. |
|
window_size (int): Size of the local window for attention computation. |
|
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. |
|
drop (float): Dropout rate. |
|
drop_path (float | List[float]): Stochastic depth rate. Can be a float or a list of floats for each block. |
|
downsample (nn.Module | None): Downsampling layer at the end of the layer. None to skip downsampling. |
|
use_checkpoint (bool): Whether to use gradient checkpointing to save memory. |
|
local_conv_size (int): Kernel size for the local convolution in each TinyViT block. |
|
activation (nn.Module): Activation function used in the MLP. |
|
out_dim (int | None): Output dimension after downsampling. None means it will be the same as `dim`. |
|
|
|
Raises: |
|
ValueError: If `drop_path` is a list and its length doesn't match `depth`. |
|
|
|
Examples: |
|
>>> layer = BasicLayer(dim=96, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7) |
|
>>> x = torch.randn(1, 56 * 56, 96) |
|
>>> output = layer(x) |
|
>>> print(output.shape) |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
TinyViTBlock( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
drop=drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
local_conv_size=local_conv_size, |
|
activation=activation, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
self.downsample = ( |
|
None |
|
if downsample is None |
|
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation) |
|
) |
|
|
|
def forward(self, x): |
|
"""Processes input through TinyViT blocks and optional downsampling.""" |
|
for blk in self.blocks: |
|
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x) |
|
return x if self.downsample is None else self.downsample(x) |
|
|
|
def extra_repr(self) -> str: |
|
"""Returns a string with the layer's parameters for printing.""" |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
|
|
class TinyViT(nn.Module): |
|
""" |
|
TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction. |
|
|
|
This class implements the TinyViT model, which combines elements of vision transformers and convolutional |
|
neural networks for improved efficiency and performance on vision tasks. |
|
|
|
Attributes: |
|
img_size (int): Input image size. |
|
num_classes (int): Number of classification classes. |
|
depths (List[int]): Number of blocks in each stage. |
|
num_layers (int): Total number of layers in the network. |
|
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension. |
|
patch_embed (PatchEmbed): Module for patch embedding. |
|
patches_resolution (Tuple[int, int]): Resolution of embedded patches. |
|
layers (nn.ModuleList): List of network layers. |
|
norm_head (nn.LayerNorm): Layer normalization for the classifier head. |
|
head (nn.Linear): Linear layer for final classification. |
|
neck (nn.Sequential): Neck module for feature refinement. |
|
|
|
Methods: |
|
set_layer_lr_decay: Sets layer-wise learning rate decay. |
|
_init_weights: Initializes weights for linear and normalization layers. |
|
no_weight_decay_keywords: Returns keywords for parameters that should not use weight decay. |
|
forward_features: Processes input through the feature extraction layers. |
|
forward: Performs a forward pass through the entire network. |
|
|
|
Examples: |
|
>>> model = TinyViT(img_size=224, num_classes=1000) |
|
>>> x = torch.randn(1, 3, 224, 224) |
|
>>> features = model.forward_features(x) |
|
>>> print(features.shape) |
|
torch.Size([1, 256, 64, 64]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dims=(96, 192, 384, 768), |
|
depths=(2, 2, 6, 2), |
|
num_heads=(3, 6, 12, 24), |
|
window_sizes=(7, 7, 14, 7), |
|
mlp_ratio=4.0, |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
use_checkpoint=False, |
|
mbconv_expand_ratio=4.0, |
|
local_conv_size=3, |
|
layer_lr_decay=1.0, |
|
): |
|
""" |
|
Initializes the TinyViT model. |
|
|
|
This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of |
|
attention and convolution blocks, and a classification head. |
|
|
|
Args: |
|
img_size (int): Size of the input image. Default is 224. |
|
in_chans (int): Number of input channels. Default is 3. |
|
num_classes (int): Number of classes for classification. Default is 1000. |
|
embed_dims (Tuple[int, int, int, int]): Embedding dimensions for each stage. |
|
Default is (96, 192, 384, 768). |
|
depths (Tuple[int, int, int, int]): Number of blocks in each stage. Default is (2, 2, 6, 2). |
|
num_heads (Tuple[int, int, int, int]): Number of attention heads in each stage. |
|
Default is (3, 6, 12, 24). |
|
window_sizes (Tuple[int, int, int, int]): Window sizes for each stage. Default is (7, 7, 14, 7). |
|
mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. Default is 4.0. |
|
drop_rate (float): Dropout rate. Default is 0.0. |
|
drop_path_rate (float): Stochastic depth rate. Default is 0.1. |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default is False. |
|
mbconv_expand_ratio (float): Expansion ratio for MBConv layer. Default is 4.0. |
|
local_conv_size (int): Kernel size for local convolutions. Default is 3. |
|
layer_lr_decay (float): Layer-wise learning rate decay factor. Default is 1.0. |
|
|
|
Examples: |
|
>>> model = TinyViT(img_size=224, num_classes=1000) |
|
>>> x = torch.randn(1, 3, 224, 224) |
|
>>> output = model(x) |
|
>>> print(output.shape) |
|
torch.Size([1, 1000]) |
|
""" |
|
super().__init__() |
|
self.img_size = img_size |
|
self.num_classes = num_classes |
|
self.depths = depths |
|
self.num_layers = len(depths) |
|
self.mlp_ratio = mlp_ratio |
|
|
|
activation = nn.GELU |
|
|
|
self.patch_embed = PatchEmbed( |
|
in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation |
|
) |
|
|
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
kwargs = dict( |
|
dim=embed_dims[i_layer], |
|
input_resolution=( |
|
patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), |
|
patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), |
|
), |
|
|
|
|
|
depth=depths[i_layer], |
|
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint, |
|
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)], |
|
activation=activation, |
|
) |
|
if i_layer == 0: |
|
layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs) |
|
else: |
|
layer = BasicLayer( |
|
num_heads=num_heads[i_layer], |
|
window_size=window_sizes[i_layer], |
|
mlp_ratio=self.mlp_ratio, |
|
drop=drop_rate, |
|
local_conv_size=local_conv_size, |
|
**kwargs, |
|
) |
|
self.layers.append(layer) |
|
|
|
|
|
self.norm_head = nn.LayerNorm(embed_dims[-1]) |
|
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() |
|
|
|
|
|
self.apply(self._init_weights) |
|
self.set_layer_lr_decay(layer_lr_decay) |
|
self.neck = nn.Sequential( |
|
nn.Conv2d( |
|
embed_dims[-1], |
|
256, |
|
kernel_size=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(256), |
|
nn.Conv2d( |
|
256, |
|
256, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(256), |
|
) |
|
|
|
def set_layer_lr_decay(self, layer_lr_decay): |
|
"""Sets layer-wise learning rate decay for the TinyViT model based on depth.""" |
|
decay_rate = layer_lr_decay |
|
|
|
|
|
depth = sum(self.depths) |
|
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] |
|
|
|
def _set_lr_scale(m, scale): |
|
"""Sets the learning rate scale for each layer in the model based on the layer's depth.""" |
|
for p in m.parameters(): |
|
p.lr_scale = scale |
|
|
|
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) |
|
i = 0 |
|
for layer in self.layers: |
|
for block in layer.blocks: |
|
block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) |
|
i += 1 |
|
if layer.downsample is not None: |
|
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1])) |
|
assert i == depth |
|
for m in [self.norm_head, self.head]: |
|
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) |
|
|
|
for k, p in self.named_parameters(): |
|
p.param_name = k |
|
|
|
def _check_lr_scale(m): |
|
"""Checks if the learning rate scale attribute is present in module's parameters.""" |
|
for p in m.parameters(): |
|
assert hasattr(p, "lr_scale"), p.param_name |
|
|
|
self.apply(_check_lr_scale) |
|
|
|
@staticmethod |
|
def _init_weights(m): |
|
"""Initializes weights for linear and normalization layers in the TinyViT model.""" |
|
if isinstance(m, nn.Linear): |
|
|
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
"""Returns a set of keywords for parameters that should not use weight decay.""" |
|
return {"attention_biases"} |
|
|
|
def forward_features(self, x): |
|
"""Processes input through feature extraction layers, returning spatial features.""" |
|
x = self.patch_embed(x) |
|
|
|
x = self.layers[0](x) |
|
start_i = 1 |
|
|
|
for i in range(start_i, len(self.layers)): |
|
layer = self.layers[i] |
|
x = layer(x) |
|
batch, _, channel = x.shape |
|
x = x.view(batch, self.patches_resolution[0] // 4, self.patches_resolution[1] // 4, channel) |
|
x = x.permute(0, 3, 1, 2) |
|
return self.neck(x) |
|
|
|
def forward(self, x): |
|
"""Performs the forward pass through the TinyViT model, extracting features from the input image.""" |
|
return self.forward_features(x) |
|
|
|
def set_imgsz(self, imgsz=[1024, 1024]): |
|
""" |
|
Set image size to make model compatible with different image sizes. |
|
|
|
Args: |
|
imgsz (Tuple[int, int]): The size of the input image. |
|
""" |
|
imgsz = [s // 4 for s in imgsz] |
|
self.patches_resolution = imgsz |
|
for i, layer in enumerate(self.layers): |
|
input_resolution = ( |
|
imgsz[0] // (2 ** (i - 1 if i == 3 else i)), |
|
imgsz[1] // (2 ** (i - 1 if i == 3 else i)), |
|
) |
|
layer.input_resolution = input_resolution |
|
if layer.downsample is not None: |
|
layer.downsample.input_resolution = input_resolution |
|
if isinstance(layer, BasicLayer): |
|
for b in layer.blocks: |
|
b.input_resolution = input_resolution |
|
|