|
|
|
|
|
from typing import List, Optional, Tuple, Type |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from ultralytics.nn.modules import MLP, LayerNorm2d |
|
|
|
|
|
class MaskDecoder(nn.Module): |
|
""" |
|
Decoder module for generating masks and their associated quality scores using a transformer architecture. |
|
|
|
This class predicts masks given image and prompt embeddings, utilizing a transformer to process the inputs and |
|
generate mask predictions along with their quality scores. |
|
|
|
Attributes: |
|
transformer_dim (int): Channel dimension for the transformer module. |
|
transformer (nn.Module): Transformer module used for mask prediction. |
|
num_multimask_outputs (int): Number of masks to predict for disambiguating masks. |
|
iou_token (nn.Embedding): Embedding for the IoU token. |
|
num_mask_tokens (int): Number of mask tokens. |
|
mask_tokens (nn.Embedding): Embedding for the mask tokens. |
|
output_upscaling (nn.Sequential): Neural network sequence for upscaling the output. |
|
output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks. |
|
iou_prediction_head (nn.Module): MLP for predicting mask quality. |
|
|
|
Methods: |
|
forward: Predicts masks given image and prompt embeddings. |
|
predict_masks: Internal method for mask prediction. |
|
|
|
Examples: |
|
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module) |
|
>>> masks, iou_pred = decoder( |
|
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, multimask_output=True |
|
... ) |
|
>>> print(f"Predicted masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}") |
|
""" |
|
|
|
def __init__( |
|
self, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int = 3, |
|
activation: Type[nn.Module] = nn.GELU, |
|
iou_head_depth: int = 3, |
|
iou_head_hidden_dim: int = 256, |
|
) -> None: |
|
""" |
|
Initializes the MaskDecoder module for generating masks and their quality scores. |
|
|
|
Args: |
|
transformer_dim (int): Channel dimension for the transformer module. |
|
transformer (nn.Module): Transformer module used for mask prediction. |
|
num_multimask_outputs (int): Number of masks to predict for disambiguating masks. |
|
activation (Type[nn.Module]): Type of activation to use when upscaling masks. |
|
iou_head_depth (int): Depth of the MLP used to predict mask quality. |
|
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality. |
|
|
|
Examples: |
|
>>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6) |
|
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer) |
|
>>> print(decoder) |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
|
|
self.output_upscaling = nn.Sequential( |
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(transformer_dim // 4), |
|
activation(), |
|
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), |
|
activation(), |
|
) |
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)] |
|
) |
|
|
|
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth) |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predicts masks given image and prompt embeddings. |
|
|
|
Args: |
|
image_embeddings (torch.Tensor): Embeddings from the image encoder. |
|
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings. |
|
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes. |
|
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs. |
|
multimask_output (bool): Whether to return multiple masks or a single mask. |
|
|
|
Returns: |
|
(Tuple[torch.Tensor, torch.Tensor]): A tuple containing: |
|
- masks (torch.Tensor): Batched predicted masks. |
|
- iou_pred (torch.Tensor): Batched predictions of mask quality. |
|
|
|
Examples: |
|
>>> decoder = MaskDecoder(transformer_dim=256, transformer=transformer_module) |
|
>>> image_emb = torch.rand(1, 256, 64, 64) |
|
>>> image_pe = torch.rand(1, 256, 64, 64) |
|
>>> sparse_emb = torch.rand(1, 2, 256) |
|
>>> dense_emb = torch.rand(1, 256, 64, 64) |
|
>>> masks, iou_pred = decoder(image_emb, image_pe, sparse_emb, dense_emb, multimask_output=True) |
|
>>> print(f"Masks shape: {masks.shape}, IoU predictions shape: {iou_pred.shape}") |
|
""" |
|
masks, iou_pred = self.predict_masks( |
|
image_embeddings=image_embeddings, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
dense_prompt_embeddings=dense_prompt_embeddings, |
|
) |
|
|
|
|
|
mask_slice = slice(1, None) if multimask_output else slice(0, 1) |
|
masks = masks[:, mask_slice, :, :] |
|
iou_pred = iou_pred[:, mask_slice] |
|
|
|
|
|
return masks, iou_pred |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts masks and quality scores using image and prompt embeddings via transformer architecture.""" |
|
|
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) |
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1) |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
src = src + dense_prompt_embeddings |
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = src.shape |
|
|
|
|
|
hs, src = self.transformer(src, pos_src, tokens) |
|
iou_token_out = hs[:, 0, :] |
|
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] |
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w) |
|
upscaled_embedding = self.output_upscaling(src) |
|
hyper_in_list: List[torch.Tensor] = [ |
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens) |
|
] |
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding.shape |
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) |
|
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
|
|
return masks, iou_pred |
|
|
|
|
|
class SAM2MaskDecoder(nn.Module): |
|
""" |
|
Transformer-based decoder for predicting instance segmentation masks from image and prompt embeddings. |
|
|
|
This class extends the functionality of the MaskDecoder, incorporating additional features such as |
|
high-resolution feature processing, dynamic multimask output, and object score prediction. |
|
|
|
Attributes: |
|
transformer_dim (int): Channel dimension of the transformer. |
|
transformer (nn.Module): Transformer used to predict masks. |
|
num_multimask_outputs (int): Number of masks to predict when disambiguating masks. |
|
iou_token (nn.Embedding): Embedding for IOU token. |
|
num_mask_tokens (int): Total number of mask tokens. |
|
mask_tokens (nn.Embedding): Embedding for mask tokens. |
|
pred_obj_scores (bool): Whether to predict object scores. |
|
obj_score_token (nn.Embedding): Embedding for object score token. |
|
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer. |
|
output_upscaling (nn.Sequential): Upscaling layers for output. |
|
use_high_res_features (bool): Whether to use high-resolution features. |
|
conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0). |
|
conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1). |
|
output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks. |
|
iou_prediction_head (MLP): MLP for IOU prediction. |
|
pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction. |
|
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability. |
|
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability. |
|
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability. |
|
|
|
Methods: |
|
forward: Predicts masks given image and prompt embeddings. |
|
predict_masks: Predicts instance segmentation masks from image and prompt embeddings. |
|
_get_stability_scores: Computes mask stability scores based on IoU between thresholds. |
|
_dynamic_multimask_via_stability: Dynamically selects the most stable mask output. |
|
|
|
Examples: |
|
>>> image_embeddings = torch.rand(1, 256, 64, 64) |
|
>>> image_pe = torch.rand(1, 256, 64, 64) |
|
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256) |
|
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64) |
|
>>> decoder = SAM2MaskDecoder(256, transformer) |
|
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward( |
|
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False |
|
... ) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int = 3, |
|
activation: Type[nn.Module] = nn.GELU, |
|
iou_head_depth: int = 3, |
|
iou_head_hidden_dim: int = 256, |
|
use_high_res_features: bool = False, |
|
iou_prediction_use_sigmoid=False, |
|
dynamic_multimask_via_stability=False, |
|
dynamic_multimask_stability_delta=0.05, |
|
dynamic_multimask_stability_thresh=0.98, |
|
pred_obj_scores: bool = False, |
|
pred_obj_scores_mlp: bool = False, |
|
use_multimask_token_for_obj_ptr: bool = False, |
|
) -> None: |
|
""" |
|
Initializes the SAM2MaskDecoder module for predicting instance segmentation masks. |
|
|
|
This decoder extends the functionality of MaskDecoder, incorporating additional features such as |
|
high-resolution feature processing, dynamic multimask output, and object score prediction. |
|
|
|
Args: |
|
transformer_dim (int): Channel dimension of the transformer. |
|
transformer (nn.Module): Transformer used to predict masks. |
|
num_multimask_outputs (int): Number of masks to predict when disambiguating masks. |
|
activation (Type[nn.Module]): Type of activation to use when upscaling masks. |
|
iou_head_depth (int): Depth of the MLP used to predict mask quality. |
|
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality. |
|
use_high_res_features (bool): Whether to use high-resolution features. |
|
iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction. |
|
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability. |
|
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability. |
|
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability. |
|
pred_obj_scores (bool): Whether to predict object scores. |
|
pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction. |
|
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer. |
|
|
|
Examples: |
|
>>> transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=256, nhead=8), num_layers=6) |
|
>>> decoder = SAM2MaskDecoder(transformer_dim=256, transformer=transformer) |
|
>>> print(decoder) |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
|
|
self.pred_obj_scores = pred_obj_scores |
|
if self.pred_obj_scores: |
|
self.obj_score_token = nn.Embedding(1, transformer_dim) |
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr |
|
|
|
self.output_upscaling = nn.Sequential( |
|
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(transformer_dim // 4), |
|
activation(), |
|
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), |
|
activation(), |
|
) |
|
self.use_high_res_features = use_high_res_features |
|
if use_high_res_features: |
|
self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1) |
|
self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1) |
|
|
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)] |
|
) |
|
|
|
self.iou_prediction_head = MLP( |
|
transformer_dim, |
|
iou_head_hidden_dim, |
|
self.num_mask_tokens, |
|
iou_head_depth, |
|
sigmoid=iou_prediction_use_sigmoid, |
|
) |
|
if self.pred_obj_scores: |
|
self.pred_obj_score_head = nn.Linear(transformer_dim, 1) |
|
if pred_obj_scores_mlp: |
|
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) |
|
|
|
|
|
|
|
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability |
|
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta |
|
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
repeat_image: bool, |
|
high_res_features: Optional[List[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predicts masks given image and prompt embeddings. |
|
|
|
Args: |
|
image_embeddings (torch.Tensor): Embeddings from the image encoder with shape (B, C, H, W). |
|
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings (B, C, H, W). |
|
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes with shape (B, N, C). |
|
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs with shape (B, C, H, W). |
|
multimask_output (bool): Whether to return multiple masks or a single mask. |
|
repeat_image (bool): Flag to repeat the image embeddings. |
|
high_res_features (List[torch.Tensor] | None): Optional high-resolution features. |
|
|
|
Returns: |
|
(Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): A tuple containing: |
|
- masks (torch.Tensor): Batched predicted masks with shape (B, N, H, W). |
|
- iou_pred (torch.Tensor): Batched predictions of mask quality with shape (B, N). |
|
- sam_tokens_out (torch.Tensor): Batched SAM token for mask output with shape (B, N, C). |
|
- object_score_logits (torch.Tensor): Batched object score logits with shape (B, 1). |
|
|
|
Examples: |
|
>>> image_embeddings = torch.rand(1, 256, 64, 64) |
|
>>> image_pe = torch.rand(1, 256, 64, 64) |
|
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256) |
|
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64) |
|
>>> decoder = SAM2MaskDecoder(256, transformer) |
|
>>> masks, iou_pred, sam_tokens_out, obj_score_logits = decoder.forward( |
|
... image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings, True, False |
|
... ) |
|
""" |
|
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( |
|
image_embeddings=image_embeddings, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
dense_prompt_embeddings=dense_prompt_embeddings, |
|
repeat_image=repeat_image, |
|
high_res_features=high_res_features, |
|
) |
|
|
|
|
|
if multimask_output: |
|
masks = masks[:, 1:, :, :] |
|
iou_pred = iou_pred[:, 1:] |
|
elif self.dynamic_multimask_via_stability and not self.training: |
|
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) |
|
else: |
|
masks = masks[:, 0:1, :, :] |
|
iou_pred = iou_pred[:, 0:1] |
|
|
|
if multimask_output and self.use_multimask_token_for_obj_ptr: |
|
sam_tokens_out = mask_tokens_out[:, 1:] |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
sam_tokens_out = mask_tokens_out[:, 0:1] |
|
|
|
|
|
return masks, iou_pred, sam_tokens_out, object_score_logits |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
repeat_image: bool, |
|
high_res_features: Optional[List[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts instance segmentation masks from image and prompt embeddings using a transformer.""" |
|
|
|
s = 0 |
|
if self.pred_obj_scores: |
|
output_tokens = torch.cat( |
|
[ |
|
self.obj_score_token.weight, |
|
self.iou_token.weight, |
|
self.mask_tokens.weight, |
|
], |
|
dim=0, |
|
) |
|
s = 1 |
|
else: |
|
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) |
|
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
if repeat_image: |
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
else: |
|
assert image_embeddings.shape[0] == tokens.shape[0] |
|
src = image_embeddings |
|
src = src + dense_prompt_embeddings |
|
assert image_pe.size(0) == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" |
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = src.shape |
|
|
|
|
|
hs, src = self.transformer(src, pos_src, tokens) |
|
iou_token_out = hs[:, s, :] |
|
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] |
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w) |
|
if not self.use_high_res_features: |
|
upscaled_embedding = self.output_upscaling(src) |
|
else: |
|
dc1, ln1, act1, dc2, act2 = self.output_upscaling |
|
feat_s0, feat_s1 = high_res_features |
|
upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) |
|
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) |
|
|
|
hyper_in_list: List[torch.Tensor] = [ |
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens) |
|
] |
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding.shape |
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) |
|
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
if self.pred_obj_scores: |
|
assert s == 1 |
|
object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) |
|
else: |
|
|
|
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) |
|
|
|
return masks, iou_pred, mask_tokens_out, object_score_logits |
|
|
|
def _get_stability_scores(self, mask_logits): |
|
"""Computes mask stability scores based on IoU between upper and lower thresholds.""" |
|
mask_logits = mask_logits.flatten(-2) |
|
stability_delta = self.dynamic_multimask_stability_delta |
|
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() |
|
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() |
|
return torch.where(area_u > 0, area_i / area_u, 1.0) |
|
|
|
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): |
|
""" |
|
Dynamically selects the most stable mask output based on stability scores and IoU predictions. |
|
|
|
This method is used when outputting a single mask. If the stability score from the current single-mask |
|
output (based on output token 0) falls below a threshold, it instead selects from multi-mask outputs |
|
(based on output tokens 1-3) the mask with the highest predicted IoU score. This ensures a valid mask |
|
for both clicking and tracking scenarios. |
|
|
|
Args: |
|
all_mask_logits (torch.Tensor): Logits for all predicted masks, shape (B, N, H, W) where B is |
|
batch size, N is number of masks (typically 4), and H, W are mask dimensions. |
|
all_iou_scores (torch.Tensor): Predicted IoU scores for all masks, shape (B, N). |
|
|
|
Returns: |
|
(Tuple[torch.Tensor, torch.Tensor]): |
|
- mask_logits_out (torch.Tensor): Selected mask logits, shape (B, 1, H, W). |
|
- iou_scores_out (torch.Tensor): Selected IoU scores, shape (B, 1). |
|
|
|
Examples: |
|
>>> decoder = SAM2MaskDecoder(...) |
|
>>> all_mask_logits = torch.rand(2, 4, 256, 256) # 2 images, 4 masks each |
|
>>> all_iou_scores = torch.rand(2, 4) |
|
>>> mask_logits, iou_scores = decoder._dynamic_multimask_via_stability(all_mask_logits, all_iou_scores) |
|
>>> print(mask_logits.shape, iou_scores.shape) |
|
torch.Size([2, 1, 256, 256]) torch.Size([2, 1]) |
|
""" |
|
|
|
multimask_logits = all_mask_logits[:, 1:, :, :] |
|
multimask_iou_scores = all_iou_scores[:, 1:] |
|
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) |
|
batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device) |
|
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] |
|
best_multimask_logits = best_multimask_logits.unsqueeze(1) |
|
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] |
|
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) |
|
|
|
|
|
singlemask_logits = all_mask_logits[:, 0:1, :, :] |
|
singlemask_iou_scores = all_iou_scores[:, 0:1] |
|
stability_scores = self._get_stability_scores(singlemask_logits) |
|
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh |
|
|
|
|
|
mask_logits_out = torch.where( |
|
is_stable[..., None, None].expand_as(singlemask_logits), |
|
singlemask_logits, |
|
best_multimask_logits, |
|
) |
|
iou_scores_out = torch.where( |
|
is_stable.expand_as(singlemask_iou_scores), |
|
singlemask_iou_scores, |
|
best_multimask_iou_scores, |
|
) |
|
return mask_logits_out, iou_scores_out |
|
|