|
|
|
|
|
import concurrent.futures |
|
import statistics |
|
import time |
|
from typing import List, Optional, Tuple |
|
|
|
import requests |
|
|
|
|
|
class GCPRegions: |
|
""" |
|
A class for managing and analyzing Google Cloud Platform (GCP) regions. |
|
|
|
This class provides functionality to initialize, categorize, and analyze GCP regions based on their |
|
geographical location, tier classification, and network latency. |
|
|
|
Attributes: |
|
regions (Dict[str, Tuple[int, str, str]]): A dictionary of GCP regions with their tier, city, and country. |
|
|
|
Methods: |
|
tier1: Returns a list of tier 1 GCP regions. |
|
tier2: Returns a list of tier 2 GCP regions. |
|
lowest_latency: Determines the GCP region(s) with the lowest network latency. |
|
|
|
Examples: |
|
>>> from ultralytics.hub.google import GCPRegions |
|
>>> regions = GCPRegions() |
|
>>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3) |
|
>>> print(f"Lowest latency region: {lowest_latency_region[0][0]}") |
|
""" |
|
|
|
def __init__(self): |
|
"""Initializes the GCPRegions class with predefined Google Cloud Platform regions and their details.""" |
|
self.regions = { |
|
"asia-east1": (1, "Taiwan", "China"), |
|
"asia-east2": (2, "Hong Kong", "China"), |
|
"asia-northeast1": (1, "Tokyo", "Japan"), |
|
"asia-northeast2": (1, "Osaka", "Japan"), |
|
"asia-northeast3": (2, "Seoul", "South Korea"), |
|
"asia-south1": (2, "Mumbai", "India"), |
|
"asia-south2": (2, "Delhi", "India"), |
|
"asia-southeast1": (2, "Jurong West", "Singapore"), |
|
"asia-southeast2": (2, "Jakarta", "Indonesia"), |
|
"australia-southeast1": (2, "Sydney", "Australia"), |
|
"australia-southeast2": (2, "Melbourne", "Australia"), |
|
"europe-central2": (2, "Warsaw", "Poland"), |
|
"europe-north1": (1, "Hamina", "Finland"), |
|
"europe-southwest1": (1, "Madrid", "Spain"), |
|
"europe-west1": (1, "St. Ghislain", "Belgium"), |
|
"europe-west10": (2, "Berlin", "Germany"), |
|
"europe-west12": (2, "Turin", "Italy"), |
|
"europe-west2": (2, "London", "United Kingdom"), |
|
"europe-west3": (2, "Frankfurt", "Germany"), |
|
"europe-west4": (1, "Eemshaven", "Netherlands"), |
|
"europe-west6": (2, "Zurich", "Switzerland"), |
|
"europe-west8": (1, "Milan", "Italy"), |
|
"europe-west9": (1, "Paris", "France"), |
|
"me-central1": (2, "Doha", "Qatar"), |
|
"me-west1": (1, "Tel Aviv", "Israel"), |
|
"northamerica-northeast1": (2, "Montreal", "Canada"), |
|
"northamerica-northeast2": (2, "Toronto", "Canada"), |
|
"southamerica-east1": (2, "São Paulo", "Brazil"), |
|
"southamerica-west1": (2, "Santiago", "Chile"), |
|
"us-central1": (1, "Iowa", "United States"), |
|
"us-east1": (1, "South Carolina", "United States"), |
|
"us-east4": (1, "Northern Virginia", "United States"), |
|
"us-east5": (1, "Columbus", "United States"), |
|
"us-south1": (1, "Dallas", "United States"), |
|
"us-west1": (1, "Oregon", "United States"), |
|
"us-west2": (2, "Los Angeles", "United States"), |
|
"us-west3": (2, "Salt Lake City", "United States"), |
|
"us-west4": (2, "Las Vegas", "United States"), |
|
} |
|
|
|
def tier1(self) -> List[str]: |
|
"""Returns a list of GCP regions classified as tier 1 based on predefined criteria.""" |
|
return [region for region, info in self.regions.items() if info[0] == 1] |
|
|
|
def tier2(self) -> List[str]: |
|
"""Returns a list of GCP regions classified as tier 2 based on predefined criteria.""" |
|
return [region for region, info in self.regions.items() if info[0] == 2] |
|
|
|
@staticmethod |
|
def _ping_region(region: str, attempts: int = 1) -> Tuple[str, float, float, float, float]: |
|
"""Pings a specified GCP region and returns latency statistics: mean, min, max, and standard deviation.""" |
|
url = f"https://{region}-docker.pkg.dev" |
|
latencies = [] |
|
for _ in range(attempts): |
|
try: |
|
start_time = time.time() |
|
_ = requests.head(url, timeout=5) |
|
latency = (time.time() - start_time) * 1000 |
|
if latency != float("inf"): |
|
latencies.append(latency) |
|
except requests.RequestException: |
|
pass |
|
if not latencies: |
|
return region, float("inf"), float("inf"), float("inf"), float("inf") |
|
|
|
std_dev = statistics.stdev(latencies) if len(latencies) > 1 else 0 |
|
return region, statistics.mean(latencies), std_dev, min(latencies), max(latencies) |
|
|
|
def lowest_latency( |
|
self, |
|
top: int = 1, |
|
verbose: bool = False, |
|
tier: Optional[int] = None, |
|
attempts: int = 1, |
|
) -> List[Tuple[str, float, float, float, float]]: |
|
""" |
|
Determines the GCP regions with the lowest latency based on ping tests. |
|
|
|
Args: |
|
top (int): Number of top regions to return. |
|
verbose (bool): If True, prints detailed latency information for all tested regions. |
|
tier (int | None): Filter regions by tier (1 or 2). If None, all regions are tested. |
|
attempts (int): Number of ping attempts per region. |
|
|
|
Returns: |
|
(List[Tuple[str, float, float, float, float]]): List of tuples containing region information and |
|
latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency). |
|
|
|
Examples: |
|
>>> regions = GCPRegions() |
|
>>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2) |
|
>>> print(results[0][0]) # Print the name of the lowest latency region |
|
""" |
|
if verbose: |
|
print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...") |
|
|
|
regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys()) |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor: |
|
results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test)) |
|
|
|
sorted_results = sorted(results, key=lambda x: x[1]) |
|
|
|
if verbose: |
|
print(f"{'Region':<25} {'Location':<35} {'Tier':<5} Latency (ms)") |
|
for region, mean, std, min_, max_ in sorted_results: |
|
tier, city, country = self.regions[region] |
|
location = f"{city}, {country}" |
|
if mean == float("inf"): |
|
print(f"{region:<25} {location:<35} {tier:<5} Timeout") |
|
else: |
|
print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})") |
|
print(f"\nLowest latency region{'s' if top > 1 else ''}:") |
|
for region, mean, std, min_, max_ in sorted_results[:top]: |
|
tier, city, country = self.regions[region] |
|
location = f"{city}, {country}" |
|
print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))") |
|
|
|
return sorted_results[:top] |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
regions = GCPRegions() |
|
top_3_latency_tier1 = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=3) |
|
|