|
|
|
|
|
from pathlib import Path |
|
|
|
from ultralytics import SAM, YOLO |
|
|
|
|
|
def auto_annotate( |
|
data, |
|
det_model="yolo11x.pt", |
|
sam_model="sam_b.pt", |
|
device="", |
|
conf=0.25, |
|
iou=0.45, |
|
imgsz=640, |
|
max_det=300, |
|
classes=None, |
|
output_dir=None, |
|
): |
|
""" |
|
Automatically annotates images using a YOLO object detection model and a SAM segmentation model. |
|
|
|
This function processes images in a specified directory, detects objects using a YOLO model, and then generates |
|
segmentation masks using a SAM model. The resulting annotations are saved as text files. |
|
|
|
Args: |
|
data (str): Path to a folder containing images to be annotated. |
|
det_model (str): Path or name of the pre-trained YOLO detection model. |
|
sam_model (str): Path or name of the pre-trained SAM segmentation model. |
|
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). |
|
conf (float): Confidence threshold for detection model; default is 0.25. |
|
iou (float): IoU threshold for filtering overlapping boxes in detection results; default is 0.45. |
|
imgsz (int): Input image resize dimension; default is 640. |
|
max_det (int): Limits detections per image to control outputs in dense scenes. |
|
classes (list): Filters predictions to specified class IDs, returning only relevant detections. |
|
output_dir (str | None): Directory to save the annotated results. If None, a default directory is created. |
|
|
|
Examples: |
|
>>> from ultralytics.data.annotator import auto_annotate |
|
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt") |
|
|
|
Notes: |
|
- The function creates a new directory for output if not specified. |
|
- Annotation results are saved as text files with the same names as the input images. |
|
- Each line in the output text file represents a detected object with its class ID and segmentation points. |
|
""" |
|
det_model = YOLO(det_model) |
|
sam_model = SAM(sam_model) |
|
|
|
data = Path(data) |
|
if not output_dir: |
|
output_dir = data.parent / f"{data.stem}_auto_annotate_labels" |
|
Path(output_dir).mkdir(exist_ok=True, parents=True) |
|
|
|
det_results = det_model( |
|
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes |
|
) |
|
|
|
for result in det_results: |
|
class_ids = result.boxes.cls.int().tolist() |
|
if len(class_ids): |
|
boxes = result.boxes.xyxy |
|
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) |
|
segments = sam_results[0].masks.xyn |
|
|
|
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f: |
|
for i in range(len(segments)): |
|
s = segments[i] |
|
if len(s) == 0: |
|
continue |
|
segment = map(str, segments[i].reshape(-1).tolist()) |
|
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n") |
|
|