Delete app-backup.py
Browse files- app-backup.py +0 -141
app-backup.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
import torch
|
5 |
-
from GoogleNews import GoogleNews
|
6 |
-
from transformers import pipeline
|
7 |
-
|
8 |
-
# Set up logging
|
9 |
-
logging.basicConfig(
|
10 |
-
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
11 |
-
)
|
12 |
-
|
13 |
-
SENTIMENT_ANALYSIS_MODEL = (
|
14 |
-
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
15 |
-
)
|
16 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
-
logging.info(f"Using device: {DEVICE}")
|
18 |
-
logging.info("Initializing sentiment analysis model...")
|
19 |
-
sentiment_analyzer = pipeline(
|
20 |
-
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
|
21 |
-
)
|
22 |
-
logging.info("Model initialized successfully")
|
23 |
-
|
24 |
-
def fetch_articles(query, max_articles=30):
|
25 |
-
try:
|
26 |
-
logging.info(f"Fetching up to {max_articles} articles for query: '{query}'")
|
27 |
-
googlenews = GoogleNews(lang="en")
|
28 |
-
googlenews.search(query)
|
29 |
-
|
30 |
-
# 첫 페이지 결과 가져오기
|
31 |
-
articles = googlenews.result()
|
32 |
-
|
33 |
-
# 목표 기사 수에 도달할 때까지 추가 페이지 가져오기
|
34 |
-
page = 2
|
35 |
-
while len(articles) < max_articles and page <= 10: # 최대 10페이지까지만 시도
|
36 |
-
logging.info(f"Fetched {len(articles)} articles so far. Getting page {page}...")
|
37 |
-
googlenews.get_page(page)
|
38 |
-
page_results = googlenews.result()
|
39 |
-
|
40 |
-
# 새 결과가 없으면 중단
|
41 |
-
if not page_results:
|
42 |
-
logging.info(f"No more results found after page {page-1}")
|
43 |
-
break
|
44 |
-
|
45 |
-
articles.extend(page_results)
|
46 |
-
page += 1
|
47 |
-
|
48 |
-
# 최대 기사 수로 제한
|
49 |
-
articles = articles[:max_articles]
|
50 |
-
|
51 |
-
logging.info(f"Successfully fetched {len(articles)} articles")
|
52 |
-
return articles
|
53 |
-
except Exception as e:
|
54 |
-
logging.error(
|
55 |
-
f"Error while searching articles for query: '{query}'. Error: {e}"
|
56 |
-
)
|
57 |
-
raise gr.Error(
|
58 |
-
f"Unable to search articles for query: '{query}'. Try again later...",
|
59 |
-
duration=5,
|
60 |
-
)
|
61 |
-
|
62 |
-
def analyze_article_sentiment(article):
|
63 |
-
logging.info(f"Analyzing sentiment for article: {article['title']}")
|
64 |
-
sentiment = sentiment_analyzer(article["desc"])[0]
|
65 |
-
article["sentiment"] = sentiment
|
66 |
-
return article
|
67 |
-
|
68 |
-
def analyze_asset_sentiment(asset_name):
|
69 |
-
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
|
70 |
-
logging.info("Fetching up to 30 articles")
|
71 |
-
articles = fetch_articles(asset_name, max_articles=30)
|
72 |
-
logging.info("Analyzing sentiment of each article")
|
73 |
-
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
|
74 |
-
logging.info("Sentiment analysis completed")
|
75 |
-
return convert_to_dataframe(analyzed_articles)
|
76 |
-
|
77 |
-
def convert_to_dataframe(analyzed_articles):
|
78 |
-
df = pd.DataFrame(analyzed_articles)
|
79 |
-
df["Title"] = df.apply(
|
80 |
-
lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
|
81 |
-
axis=1,
|
82 |
-
)
|
83 |
-
df["Description"] = df["desc"]
|
84 |
-
df["Date"] = df["date"]
|
85 |
-
|
86 |
-
def sentiment_badge(sentiment):
|
87 |
-
colors = {
|
88 |
-
"negative": "red",
|
89 |
-
"neutral": "gray",
|
90 |
-
"positive": "green",
|
91 |
-
}
|
92 |
-
color = colors.get(sentiment, "grey")
|
93 |
-
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
|
94 |
-
|
95 |
-
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
|
96 |
-
return df[["Sentiment", "Title", "Description", "Date"]]
|
97 |
-
|
98 |
-
with gr.Blocks() as iface:
|
99 |
-
gr.Markdown("# Trading Asset Sentiment Analysis")
|
100 |
-
gr.Markdown(
|
101 |
-
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
|
102 |
-
)
|
103 |
-
|
104 |
-
with gr.Row():
|
105 |
-
input_asset = gr.Textbox(
|
106 |
-
label="Asset Name",
|
107 |
-
lines=1,
|
108 |
-
placeholder="Enter the name of the trading asset...",
|
109 |
-
)
|
110 |
-
|
111 |
-
with gr.Row():
|
112 |
-
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
113 |
-
|
114 |
-
gr.Examples(
|
115 |
-
examples=[
|
116 |
-
"Bitcoin",
|
117 |
-
"Tesla",
|
118 |
-
"Apple",
|
119 |
-
"Amazon",
|
120 |
-
],
|
121 |
-
inputs=input_asset,
|
122 |
-
)
|
123 |
-
|
124 |
-
with gr.Row():
|
125 |
-
with gr.Column():
|
126 |
-
with gr.Blocks():
|
127 |
-
gr.Markdown("## Articles and Sentiment Analysis")
|
128 |
-
articles_output = gr.Dataframe(
|
129 |
-
headers=["Sentiment", "Title", "Description", "Date"],
|
130 |
-
datatype=["markdown", "html", "markdown", "markdown"],
|
131 |
-
wrap=False,
|
132 |
-
)
|
133 |
-
|
134 |
-
analyze_button.click(
|
135 |
-
analyze_asset_sentiment,
|
136 |
-
inputs=[input_asset],
|
137 |
-
outputs=[articles_output],
|
138 |
-
)
|
139 |
-
|
140 |
-
logging.info("Launching Gradio interface")
|
141 |
-
iface.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|