import gradio as gr import pandas as pd import requests from io import BytesIO def convert_parquet_to_csv(parquet_file=None, parquet_url=None): # Read the Parquet file either from an upload or a URL if parquet_file is not None: df = pd.read_parquet(parquet_file.name) elif parquet_url is not None: response = requests.get(parquet_url) response.raise_for_status() # Check that the request was successful df = pd.read_parquet(BytesIO(response.content)) else: raise ValueError("Either parquet_file or parquet_url must be provided") # Clean string columns to handle any invalid UTF-8 sequences for col in df.select_dtypes(include=["object"]).columns: df[col] = df[col].apply( lambda x: x.encode("utf-8", errors="replace").decode("utf-8", errors="replace") if isinstance(x, str) else x ) # Convert the DataFrame to CSV format csv_data = df.to_csv(index=False) # Save the CSV data to a file output_file_path = "output.csv" with open(output_file_path, "w", encoding="utf-8") as f: f.write(csv_data) return output_file_path demo = gr.Interface( fn=convert_parquet_to_csv, inputs=[gr.File(label="Parquet File"), gr.Textbox(label="Parquet File URL")], outputs=[gr.File(label="CSV Output")], title="Parquet to CSV Converter", description="Convert a Parquet file to CSV format from a downloadable link or file upload" ) if __name__ == "__main__": demo.launch()